
The 555.m4x and RSB.m4x SynDEx Macro-Executives:
Description of Macros for Handling RSMPC555 Boards

Pierre Pomiers
Robosoft S.A.

Technopole d’Izarbel, 64210 Bidart, France.
Tel.: +33-5-59 41 53 66; Fax.: +33-5-59 41 53 79

E-mail: pierre@robosoft.fr

May 27, 2002

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

2

Contents

Contents 6

List of Figures 7

List of Tables 9

I Acknowledgments 11

Introduction 13

Recommandations 15

II Motorola MPC555 chip specific macros 17

1 Subroutine calls for interfacing separately compiled C functions 19
1.1 The Cdecl macro . 19
1.2 The Ccall macro . 19

2 Generic unary operations for standard scalar and array types 21
2.1 The gnot macro . 21
2.2 The gneg macro . 21

3 Generic binary operations for standard scalar and array types 23
3.1 The gand macro . 23
3.2 The gor macro . 23
3.3 The gxor macro . 23
3.4 The gadd macro . 23
3.5 The gsub macro . 23
3.6 The gmul macro . 24
3.7 The gdiv macro . 24

4 Generic relational operations for standard scalar types 25
4.1 The gequal macro . 25
4.2 The gnotequal macro . 25
4.3 The gless macro . 25
4.4 The gnotless macro . 25

5 Generic DSP-like operations for integer and float types 27
5.1 The gdotProd macro . 27
5.2 The gequalize macro . 27

3

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

6 General-purpose input/output 29
6.1 The genGPIO generic macro . 29

6.1.1 The INIT option . 29
6.1.2 The RDSTATEoption . 29
6.1.3 The WRSTATEoption . 30
6.1.4 The RDPIN option . 30
6.1.5 The WRPINoption . 30
6.1.6 The ENDoption . 30

6.2 The RDGPIOuser macro . 31
6.3 The RDGPIOit user macro . 31
6.4 The WRGPIOuser macro . 31
6.5 The WRGPIOit user macro . 32

7 Queued analog to digital converter module 33
7.1 The genQADCgeneric macro . 33

7.1.1 The INIT option . 33
7.1.2 The LOOPoption . 34
7.1.3 The ENDoption . 34

7.2 The RDQADCuser macro . 34
7.3 The RDQADCit user macro . 35

8 MIOS 16-bit Parallel Port I/O Submodule 37
8.1 The genMPIOSMgeneric macro . 37

8.1.1 The INIT option . 37
8.1.2 The LOOPoption . 37
8.1.3 The ONoption . 38
8.1.4 The OFFoption . 38
8.1.5 The ENDoption . 38

8.2 The MPIOSMuser macro . 38
8.3 Note for users . 39

9 Pulse width modulation generator 41
9.1 The genPWMgeneric macro . 41

9.1.1 The INIT option . 41
9.1.2 The LOOPoption . 41
9.1.3 The ENDoption . 42

9.2 The PWMuser macro . 42
9.3 The PWMit user macro . 42

10 Fast quadrature decode TPU function (for incremental encoder support) 43
10.1 The genTPU FQDgeneric macro . 43

10.1.1 The INIT option . 43
10.1.2 The LOOPoption . 43
10.1.3 The ENDoption . 44

10.2 The TPU FQDuser macro . 44
10.3 The TPU FQDit user macro . 45

11 Queued serial peripheral interface 47
11.1 The QSPI generic macro . 47

11.1.1 The INIT option . 47
11.1.2 The ENDoption . 47

4

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

12 Serial port support (POLLING implementation) 49
12.1 The genSCIpoll generic macro . 49

12.1.1 The INIT option . 49
12.1.2 The RDoption . 51
12.1.3 The WRCoption . 51
12.1.4 The WRBoption . 52
12.1.5 The STBoption . 52
12.1.6 The STNoption . 52
12.1.7 The WRAoption . 53
12.1.8 The WRSoption . 53
12.1.9 The WRNoption . 54
12.1.10 The ENDoption . 54

13 Serial port support (interrupt handling implementation) 55
13.1 The genSCI it generic macro . 55

13.1.1 The INIT option . 55
13.1.2 The ENDoption . 55

13.2 The SCI it gets user macro . 56
13.3 Note for users . 56
13.4 The SCI puts user macro . 57

III Robosoft board specific macros 59

14 Robosoft board initializations 61
14.1 The main ini macro . 61

15 Digital to analog converter 63
15.1 The genDACgeneric macro . 63

15.1.1 The INIT option . 63
15.1.2 The LOOPoption . 63
15.1.3 The ENDoption . 64

15.2 The DACuser macro . 64
15.3 The DACit user macro . 65

16 On-board LED interface 67
16.1 The genLED generic macro . 67

16.1.1 The INIT option . 67
16.1.2 The ONoption . 67
16.1.3 The OFFoption . 67
16.1.4 The LOOPoption . 67
16.1.5 The ENDoption . 68

16.2 The LEDuser macro . 68
16.3 The LED it user macro . 68

17 SPI absolute encoder 69
17.1 The genSPIencoder generic macro . 69

17.1.1 The INIT option . 69
17.1.2 The LOOPoption . 69
17.1.3 The ENDoption . 69

17.2 The SPIencoder user macro . 70
17.3 The SPIencoder it user macro . 70

5

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

18 Power amplifier direction setting 71
18.1 The dirAmp generic macro . 71

18.1.1 The INI option . 71
18.1.2 The DEFoption . 71
18.1.3 The INV option . 71

18.2 Note for users . 72

19 Motor power amplifier validation 73
19.1 The inhAmp generic macro . 73

19.1.1 The ENAoption . 73
19.1.2 The DIS option . 73

19.2 Note for users . 74

20 Watch dog 75
20.1 The genWatchDog generic macro . 75

20.1.1 The INIT option . 75
20.1.2 The LOOPoption . 75
20.1.3 The ENDoption . 76

20.2 The watchDog it user macro . 76

21 Dot matrix LCD controller support 77
21.1 The genLCD generic macro . 77

21.1.1 The INIT option . 77
21.1.2 The WRINSToption . 78
21.1.3 The WRASCII option . 78
21.1.4 The WRCHRoption . 78
21.1.5 The BUSYTSToption . 78
21.1.6 The RETHOMoption . 78
21.1.7 The CLRSCRoption . 79
21.1.8 The MOVFWDoption . 79
21.1.9 The MOVBCKoption . 79
21.1.10 The SETPOSoption . 79
21.1.11 The WRSTRoption . 79
21.1.12 The ENDoption . 79

21.2 The LCDdisp user macro . 79

IV General purpose remarks 81

22 About Robosoft board axis related signals 83

Bibliography 85

Index 86

6

List of Figures

1 Structure of macro description . 15

12.1 Description of a character string . 49
12.2 Serial port round-robin buffer . 51

7

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

8

List of Tables

7.1 ADC Channel number assignments and pin designations 33

8.1 MPIOSM pins software dependencies . 39

12.1 List of the baud rates and related percent error . 50
12.2 List of the possible SCI module configurations . 50

15.1 DAC Channel number assignments and pin designations 64

21.1 HD44780U and QADC64 module A port A pins assignments 77

22.1 Correspondance between Robosoft board axis Id., PWM, validation and direction
signals data pins . 83

9

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

10

Part I

Acknowledgments

11

Introduction

This document applies to programmers intended to use SynDEx [1] for programming real-time
architectures based on RSMPC555 Robosoft control boards. Relying on the AAA1 methodology,
SynDEx is known to be both a gentle tool for distributed architectures handling and a good way
of optimizing hardware resources management. In order to take benefits of these capabilities for
our RSMPC555 product, we developped a specific SynDEx macro-executive. It gathers all macros
you need for handling Motorola MPC555 chip functionnalities and more.

You will find here a clear documentation of all these macros: definition, domain of use for
there respective input and (or) output ports), as well as there basic principle of execution. More-
over, for advanced users, we give some useful related links toward data-sheets, manufacturers
web sites and online documentations.

We intentionally have split this document into two main parts, one for each of the 555.m4x
and RSB.m4x macro-executives. The first chapter focuses Motorola MPC555 bare chip related
macros, while the second one refer to macros specifically designed for our own board hardware.

Let us remark that, from chapter 6 to document end, described macros refer to the MPC555
input/output features. As far as this part of the document is concerned, we classify macros into
two different cathegories: “generic” macros and “user” macros. By “generic” we mean macros
that are not intended to be used directly from the SynDEx CAD interface, but macros used for
programming other convenient macros. Indeed, most of the time, they give control over many
parameters non-expert users are not intended to manipulate. In other words, “generic” macros
should only be used by persons aiming to program new user-oriented macros. On the other hand,
by “user” macros we mean macros that may be used directly from the SynDEx CAD interface.
These macros are seen as user-oriented operations. They embed their own context switch, what
is not the case with “generic” macros. “user” macros context switch, used in conjunction with
the SynDEx macro generation context variable MGC, aims to provide the appropriate part of ex-
ecutive, depending on the execution step macro is currently called from. It exists three contexts:
application initialization (with MGCequal to INIT), loop execution (with MGCequal to LOOP) and
application finalization (with MGCequal to END).

We highly recommand users to refer to SynDEx web site ([1]). You will find here all informa-
tion needed for programming with SynDEx, a SynDEx CAD interface tutorial, as well as many
related links.

1Algorithm Architecture Adequation

13

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

14

Recommandations

The remainder of this document lists and describes the SynDEx MPC555 and Robosoft board
macro set. Before getting to the following pages, please refer to figure 1 that show the basic
structure of macros descriptions.

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

.global my_fun # int my_fun(int, int*, float);

This macro is useful when your compiler needs to be informed of a exixting sepa-
rately C compiled function for completing compilation process.

2.1.2 The Ccall macro

Ccall_($1, $2, $3, ..., $N)

This macro mimics the ANSI C declaration of a separately compiled function. When call-
ing Ccall , $1 is used for passing return value type and label (or void if none) and $2
is used for passing C function name. $3 up to $N correspond to either const followed
by a literal for an integer literal argument, or argument type (postfixed by ‘*’ character
if passed by address) followed by a label. Here is an example of M4 declaration and
macro-call:

> def(‘myfun’, ‘Ccall_(int $3, my_fun, const 5, int *$1, float $2)’)
> myfun(arg1,arg2,res)

and the corresponding generated MPC555 compatible assembly code:

li r3,5
B(la r4,arg1)
B(lfs fr1,arg2)
bl my_fun
B(stw r3,res)

2.2 Generic unary operations for standard scalar and
array types

2.2.1 The gnot macro

gnot(?X, !res)

This macro implements the bitwise negation. It sets res with the one’s complement of
X.

2.2.2 The gneg macro

gneg(?X, !res)

This macro implements the negation. It sets res with the negative of X.

12

Macro output data

by a ‘!’ character)
(which name is prefixed

Macro input data
(which name is prefixed
by a ‘?’ character)

Macro arguments
($i indicating the i-th
argument of the macro)

Example of generated code

Example of M4 macro call

Macro description

Macro description title

Macro synopsis

Figure 1: Structure of macro description

15

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

16

Part II

Motorola MPC555 chip specific
macros

17

Chapter 1

Subroutine calls for interfacing
separately compiled C functions

For the MPC555, when calling a separately compiled C functions, first function parameters are
passed directly in the registers and the remaining parameters are passed in the stack.

When using GNU PowerPC ELF 32-bit cross compiler, integer registers r3 , r4 , ..., r10 are
allocated in this order for unsigned or signed integers (char, short, int) and for addresses. The
same way, floating point registers fr1 , fr2 , ..., fr8 are allocated in this order for single and
double precision reals (float, double). In the case the function returns a result, it is passed back in
register r3 if integer, or in register fr1 if real.

Be careful, in the present implementation, only register passing is supported. A message error
indicating too many arguments are passed is generated if registers allocation is over.

1.1 The Cdecl macro

Cdecl_($1, $2, $3, ..., $N)

This macro generates the declaration of a separately C compiled function. When calling Cdecl ,
$1 is used for passing return value type (int, float, double, etc...), $2 is used for passing C func-
tion name and $3 up to $N for passing function arguments type (postfixed by ‘* ’ character if it
indicates an argument passed by address). Here is an example of M4 macro-call:

> Cdecl_(int,my_fun,int,int*,float)

and the corresponding generated MPC555 compatible assembly code:

.global my_fun # int my_fun(int, int*, float);

This macro is useful when your compiler needs to be informed of a exixting separately C
compiled function for completing compilation process.

1.2 The Ccall macro

Ccall_($1, $2, $3, ..., $N)

This macro mimics the ANSI C declaration of a separately compiled function. When calling
Ccall , $1 is used for passing return value type and label (or void if none) and $2 is used
for passing C function name. $3 up to $N correspond to either const followed by a literal for
an integer literal argument, or argument type (postfixed by ‘* ’ character if passed by address)
followed by a label. Here is an example of M4 declaration and macro-call:

19

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

> def(‘myfun’, ‘Ccall_(int $3, my_fun, const 5, int *$1, float $2)’)
> myfun(arg1,arg2,res)

and the corresponding generated MPC555 compatible assembly code:

li r3,5
B(la r4,arg1)
B(lfs fr1,arg2)
bl my_fun
B(stw r3,res)

20

Chapter 2

Generic unary operations for
standard scalar and array types

2.1 The gnot macro

gnot(?X, !res)

This macro implements the bitwise negation. It sets res with the one’s complement of X.

2.2 The gneg macro

gneg(?X, !res)

This macro implements the negation. It sets res with the negative of X.

21

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

22

Chapter 3

Generic binary operations for
standard scalar and array types

3.1 The gand macro

gand(?x, ?y, !res)

This macro implements the bitwise AND operation. It sets res with the result of x ANDed with
y .

3.2 The gor macro

gor(?x, ?y, !res)

This macro implements the bitwise OR operation. It sets res with the result of x ORed with y .

3.3 The gxor macro

gxor(?x, ?y, !res)

This macro implements the bitwise exclusive OR operation. It sets res with the result of x XORed
with y .

3.4 The gadd macro

gadd(?x, ?y, !res)

This macro implements the addition operation. It sets res with the result of x added to y .

3.5 The gsub macro

gsub(?x, ?y, !res)

This macro implements the substraction operation. It sets res with the result of y substracted
from x .

23

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

3.6 The gmul macro

gmul(?x, ?y, !res)

This macro implements the multiplication operation. It sets res with the result of x multiplied
by y .

3.7 The gdiv macro

gdiv(?x, ?y, !res)

This macro implements the division operation. It sets res with the result of x divided by y .

24

Chapter 4

Generic relational operations for
standard scalar types

4.1 The gequal macro

gequal(?x, ?y, !res)

This macro implements the equality operation. It sets res to -1 in case of equality between x and
y , else, sets res to 0.

4.2 The gnotequal macro

gnotequal(?x, ?y, !res)

This macro implements the non-equality operation. It sets res to -1 in case of non-equality
between x and y , else, sets res to 0.

4.3 The gless macro

gless(?x, ?y, !res)

This macro implements the “strictly less than” operation. It sets res to -1 if x value is less than y
value, else, sets res to 0.

4.4 The gnotless macro

gnotless(?x, ?y, !res)

This macro implements the “greater than or equal to” operation. It sets res to -1 if x value is
greater than or equal to y value, else, sets res to 0.

25

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

26

Chapter 5

Generic DSP-like operations for
integer and float types

5.1 The gdotProd macro

gdotProd(?X, ?Y, !res)

This macro implement the dot product of X and Y. X and Y type may be either int, float, double,
array of int, array of float or array of double. Result of the dot product is returned in res of
relevant type.

res =
N

∑
i=0

X[i] ∗ Y[i]

Note that when used for FIR or IIR filters, one of X or Y is a slidding window, the other is the
coefficients array. For IIR filters, the input and output slidding windows are concatenated as are
the two coefficient arrays, and the result is stored at the array end.

5.2 The gequalize macro

gequalize(?err, ?win, ?!coef)

This macro implements an equalizer algorithm, where err is used for passing an error value
and win for passing a window. coeff is both an input and output argument as it is used for
updating a coefficient or an array of coefficient. Result of the equalization is returned in coeff .
In the following equation, n indicates the current application cycle number.

coeffn[0]
...

coeffn[i]
...

coeffn[N − 1]

 =

coeffn−1[0]
...

coeffn−1[i]
...

coeffn−1[N − 1]

−

win[0]
...

win[i]
...

win[N − 1]

 ∗ err

Note that err type may be either int, float or double, while win and coeff type may be array
of int, array of float or array of double.

27

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

28

Chapter 6

General-purpose input/output

The MPC555 incorporates system functions that normally must be provided in external circuits.
For, through the USIU submodule, it provides 64 pins for general-purpose digital I/O. The SGPIO
pins are multiplexed with the address and data pins. As, in our case, SGPIO pins are not required
for communicating with external devices is not required, the user can freely use all of them.

6.1 The genGPIO generic macro

6.1.1 The INIT option

genGPIO(INIT)

Called with $1 equal to INIT , this macro initializes the MPC555 General-purpose input/output
ports. After initialization, SGPIOD pins 16 to 23 are set as inputs and SGPIOD pins 24 to 31 are
set as outputs.

Here is the M4 macro-call used for initialization:

> genGPIO(INIT)

Refer to MPC555 User’s manual [2] section 6.3 for hardware details.

6.1.2 The RDSTATEoption

genGPIO(RDSTATE, ?int)

Called with $1 equal to RDSTATE, this macro read, in one shot, the 8 input pins status (from
SGPIOD pins 16 to 23) and reports it in the passed int 8-bit boolean variable. If returned value
bit k (from 0 to 7) is set to 0 then SGPIOD pin 16+k signal is low, else, if set to 1, SGPIOD pin 16+k
signal is high.

Here is an example of M4 macro-call that store the 8 input pins status into the passed variable
val :

> genGPIO(RDSTATE, val)

Refer to MPC555 User’s manual [2] subsection 6.13.5 for further information.

29

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

6.1.3 The WRSTATEoption

genGPIO(WRSTATE, ?int)

Called with $1 equal to WRSTATE, this macro write, in one shot, the 8 output pins states (from
SGPIOD pins 24 to 31) according to value passed in int 8-bit boolean variable. If passed value
bit k (from 0 to 7) set to 0 SGPIOD pin 24+k signal is driven low, else, if set to 1, SGPIOD pin 24+k
signal is driven high.

Here is an example of M4 macro-call that drives output pin 1 and output pin 2 signals high,
other pins signals are driven low:

> genGPIO(WRSTATE, val) # With val set to 6 (00000110b).

Refer to MPC555 User’s manual [2] subsection 6.13.5 for further information.

6.1.4 The RDPIN option

genGPIO(RDPIN, pin, !bool)

Called with $1 equal to RDPIN, this macro read the status of input pin which number is given in
pin argument. pin argument value may be from 0 to 7 corresponding to SGPIOD pins from 16
to 23. Status value is reported into the passed bool 8-bit boolean variable. If mentioned input
pin signal is low then bool is set to 0, else, if mentioned input pin signal is high, bool is set to 1.

Here is an example of M4 macro-call that store input pin 3 status into the passed variable val :

> genGPIO(RDPIN, 3, val) # With val set to 6 (00000110b).

Refer to MPC555 User’s manual [2] subsection 6.13.5 for further information.

6.1.5 The WRPINoption

genGPIO(WRPIN, pin, ?bool)

Called with $1 equal to WRPIN, this macro write one pin state. Pin number is given in pin
argument that may be from 0 to 7 corresponding to SGPIOD pins from 24 to 31. State value is
passed in the 8-bit boolean variable bool . If passed value is set to 0 then mentioned output pin
is driven low, else, if passed value is set to 1 then mentioned output pin is driven high. Other not
mentionned pins signals are left unchanged.

Here is an example of M4 macro-calls that drives output pin 4 signal low, output pin 7 signal
high and leaves other pins signals unchanged: passed variable val :

> genGPIO(WRPIN, 4, val0) # With val0 set to 0.
> genGPIO(WRPIN, 7, val1) # With val1 set to 1.

Refer to MPC555 User’s manual [2] subsection 6.13.5 for further information.

6.1.6 The ENDoption

genGPIO(END)

Called with $1 equal to END, this macro reset SIU general-purpose I/O groups directions and
data to their initial states.

Here is the M4 macro-call used for finalization:

30

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

> genGPIO(END)

Refer to MPC555 User’s manual [2] subsection 6.13.5.1, 6.13.5.2 and 6.13.5.3 for, respectively,
SGPIO Data Register 1 (SGPIODT1), SGPIO Data Register 2 (SGPIODT2) and SGPIO Control
Register (SGPIOCR) reset values information.

6.2 The RDGPIOuser macro

RDGPIO(inputPin,!state)

This user macro implements reading of a given numerical input pin and returns its status as out-
put. outputPin gives the input pin number (from 0 to 7, i.e. from SGPIOD 16 to 23). Returned
state output 8-bit boolean variable value is set to 0 when pin signal is low, and set to 1 when
pin signal is high.

Depending on the SynDEx macro generation context (variable MGC), RDGPIOmacro call per-
forms general-purpose input initialization, input pin state acquisition (during main loop execu-
tion) and finally general-purpose input reset (during application finalization step).

Here is a piece of M4 macro executive that store in val the input pin 5 signal status:

> alloc_(bool, val)
> main_
> dnl Initialization step (MGC==INIT)
> RDGPIO(5)
> loop_
> dnl Loop execution (MGC==LOOP)
> RDGPIO(5, val)
> endloop_
> dnl Finalization step (MGC==END)
> RDGPIO(5)
> endmain_

6.3 The RDGPIOit user macro

RDGPIO_it_(inputPin,!state)

Same as RDGPIObut executed under timer interrupt. Code generated for this macro is included
into PIT1 handler. Thus state 32-bit integer variable content is updated asynchronously each
time PIT trigs an interrupt (for instance each 1 or 5 ms).

6.4 The WRGPIOuser macro

WRGPIO(outputPin,?state)

This user macro implements writing of a given numerical input pin state which value is passed as
input. outputPin gives the output pin number (from 0 to 7, i.e. from SGPIOD 24 to 31). Passed
state input 8-bit boolean variable value may be either 0 (for driving mentioned pin signal low)
or 1 (for driving mentioned pin signal high).

Depending on the SynDEx macro generation context (variable MGC), WRGPIOmacro call per-
forms general-purpose output initialization, input pin state writing (during main loop execution)
and finally general-purpose output reset (during application finalization step).

1Periodical Interrupt Timer

31

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Here is a piece of M4 macro executive that drives output pin 5 signal, depending on input
variable val :

> alloc_(bool, val)
> main_
> dnl Initialization step (MGC==INIT)
> WRGPIO(5)
> loop_
> dnl Loop execution (MGC==LOOP)
> WRGPIO(5, val)
> endloop_
> dnl Finalization step (MGC==END)
> WRGPIO(5)
> endmain_

6.5 The WRGPIOit user macro

WRGPIO_it_(outputPin,?state)

Same as WRGPIObut executed under timer interrupt. Code generated for this macro is included
into PIT handler. Thus state 32-bit integer variable content is read asynchronously each time
PIT trigs an interrupt.

32

Chapter 7

Queued analog to digital converter
module

Analog to digital conversion is an electronic process in which a continuously variable analog
signal is changed, without altering its essential content, into a multi-level digital signal. The input
to an analog to digital converter (ADC) consists of a voltage that varies among a theoretically
infinite number of values. The output of the ADC, in contrast, is defined over 2 states as a binary
digital signal.

7.1 The genQADCgeneric macro

7.1.1 The INIT option

genQADC(INIT, analogChannel, inputSampleTime)

Called with $1 equal to INIT , this macro initializes the MPC555 QADC (Queued Analog-to-
Digital Converter) Module A and B. Accessible analog channels are numbered from 0 to 31. Cor-
respondance between analog channels numbers and MPC555 hardware pins is given in table 7.1
(see also MPC555 User’s manual [2] Table 13-20): analog channels numbers are passed using
argument analogChannel .

User can also specifies the window length to be used for analog channel sampling. Longer
sample times permit more accurate A/D conversions of signals with higher source impedances
(refer to MPC555 User’s manual [2] Table 13-19). This choice is done setting inputSampleTime
argument. Possible value are 2, 4, 8 or 16, corresponding to the following sample window length:
(TQCKLs ∗ 2), (TQCKL ∗ 4), (TQCKL ∗ 8) or (TQCKL ∗ 16), where TQCKL is the QADC64 Clock period.
Calculation of TQCKL is explained in MPC555 User’s manual [2] subsection 13.10.4 at page 13-27).
In current implementation, QCLK frequency is set to 2 MHz (i.e. TQCKL = 500 ns).

Analog channel number Reference to MPC555 hardware
0 to 3 QADC Module A channels 0 to 3

4 to 15 QADC Module A channels 48 to 59
16 to 19 QADC Module B channels 0 to 3
20 to 31 QADC Module B channels 48 to 59

Table 7.1: ADC Channel number assignments and pin designations

Here is the M4 macro-call used for initializing analog channel 4 and selecting a (TQCKL ∗ 8)
sample window length:

33

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

> genQADC(INIT, 4, 8)

Refer to MPC555 User’s manual [2] subsection 13.12 for programming model details.

7.1.2 The LOOPoption

genQADC(LOOP, analogChannel, !int)

Called with $1 equal to LOOP, this macro reads the conversion result obtained from sampling
analog channel signal. Conversion result is coded over 10 bits. Analog channel number is passed
using argument analogChannel . Conversion result is aligned and stored into the passed 32-
bit interger variable int . Let us remark that Robosoft board hardware fix the analog input low
voltage reference to VRL = 0V and high voltage reference to VRH = 5V. Corresponding returned
conversion values range are between 0 and 1023.

Here is an example of M4 macro-call used for reading analog channel 5 signal converted
value:

> genQADC(LOOP, 5, val)

Refer to MPC555 User’s manual [2] subsection 13.12.11 for details concerning command conver-
sion.

7.1.3 The ENDoption

genQADC(END, analogChannel)

Called with $1 equal to END, this macro reset analog channel which number is passed using
argument analogChannel . It consistes of finishing any current conversion and then freezing
QADC module (refer to [2] subsection 13.12.1).

Here is an example of M4 macro-call used for analog channel 1 finalization:

> genQADC(END, 1)

7.2 The RDQADCuser macro

RDQADC(analogChannel,!result)

This user macro implements reading of a given analog channel signal conversion result. Input
channel number (from 0 to 31) is passed using argument analogChannel . Conversion result
(coded over 10 bits) is aligned and stored into the passed 32-bit interger variable result .

Depending on the SynDEx macro generation context (variable MGC), RDQADCmacro call per-
forms QADC module initialization, analog channel signal conversion (during main loop execu-
tion) and finally QADC module reset (during application finalization step).

Here is a piece of M4 macro executive that reads the conversion result of analog channel 1
and returns it into variable val :

> alloc_(int, val)
> main_
> dnl Initialization step (MGC==INIT)
> RDQADC(1)
> loop_
> dnl Loop execution (MGC==LOOP)
> RDQADC(1, val)

34

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

> endloop_
> dnl Finalization step (MGC==END)
> RDQADC(1)
> endmain_

7.3 The RDQADCit user macro

RDQADC_it_(analogChannel,!result)

Same as RDQADCbut executed under timer interrupt. Code generated for this macro is included
into PIT handler. Thus result 32-bit integer variable content is updated asynchronously each
time PIT trigs an interrupt.

35

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

36

Chapter 8

MIOS 16-bit Parallel Port I/O
Submodule

The MPC555 incorporates system functions that normally must be provided in external circuits.
For, through the MIOS submodule (MPIOSM), it provides 16 pins for digital I/O. On the Robosoft
board, all of the MPIOSM pins are set as output (i.e. for sending digital signal). As in our case,
some pins are normally required for driving external devices user can not freely use all of them.

8.1 The genMPIOSMgeneric macro

8.1.1 The INIT option

genMPIOSM(INIT)

Called with $1 equal to INIT , this macro initializes the MPC555 MPIOSM 16-bits port. After
initialization, SGPIOD pins 0 to 15 are set as output.

Here is the M4 macro-call used for initialization:

> genMPIOSM(INIT)

Refer to MPC555 User’s manual [2] section 15.13 for hardware details.

8.1.2 The LOOPoption

genMPIOSM(LOOP,pin,?bool)

Called with $1 equal to LOOP, this macro initializes the MPC555 MPIOSM 16-bits port. After
initialization, SGPIOD pins 0 to 15 are set as output.

Called with $1 equal to LOOP, this macro write one pin state. Pin number is given in pin
argument that may be from 0 to 15 corresponding to MPIOSM pins from 0 to 15. State value is
passed in the 8-bit boolean variable bool . If passed value is set to 0 then mentioned output pin
is driven low, else, if passed value is set to 1 then mentioned output pin is driven high. Other not
mentionned pins signals are left unchanged.

Here is an example of M4 macro-calls that drives output pin 4 signal low, output pin 7 signal
high and leaves other pins signals unchanged: passed variable val :

> genMPIOSM(LOOP, 4, val0) # With val0 set to 0.
> genMPIOSM(LOOP, 7, val1) # With val1 set to 1.

Refer to MPC555 User’s manual [2] subsection 15.13.1 for further information.

37

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

8.1.3 The ONoption

genMPIOSM(ON,pin)

Called with $1 equal to ON, this macro drive a given MPIOSM port pin state high. Pin number is
passed using argument pin which possible values are from 0 to 15.

Here is an example of M4 macro-calls that drives output pin 4 signal high and leaves other
pins signals unchanged: passed variable val :

> genMPIOSM(ON, 4)

8.1.4 The OFFoption

genMPIOSM(OFF,pin)

Called with $1 equal to OFF, this macro drive a given MPIOSM port pin state low. Pin number
is passed using argument pin which possible values are from 0 to 15.

Here is an example of M4 macro-calls that drives output pin 7 signal low and leaves other
pins signals unchanged: passed variable val :

> genMPIOSM(OFF, 7)

8.1.5 The ENDoption

genMPIOSM(END)

Called with $1 equal to END, this macro resets the MPC555 MPIOSM 16-bits port. After finaliza-
tions, MPIOSM pins 0 to 15 are set as input.

Here is the M4 macro-call used for initialization:

> genMPIOSM(INIT)

Refer to MPC555 User’s manual [2] section 15.13 for hardware details.

8.2 The MPIOSMuser macro

WRGPIO(outputPin,?state)

This user macro implements writing of a given numerical state which value is passed as input.
outputPin gives the output pin number (from 0 to 15, i.e. from MPIOSM 0 to 15). Passed state
8-bit boolean input variable value may be either 0 (for driving mentioned pin signal low) or 1 (for
driving mentioned pin signal high).

Depending on the SynDEx macro generation context (variable MGC), MPIOSMmacro call per-
forms general-purpose output initialization, input pin state writing (during main loop execution)
and finally general-purpose output reset (during application finalization step).

Here is a piece of M4 macro executive that drives output pin 5 signal, depending on input
variable val :

> alloc_(bool, val)
> main_
> dnl Initialization step (MGC==INIT)
> MPIOSM(5)
> loop_

38

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

> dnl Loop execution (MGC==LOOP)
> MPIOSM(5, val)
> endloop_
> dnl Finalization step (MGC==END)
> MPIOSM(5)
> endmain_

8.3 Note for users

Let us note that MPIOSM pins from 0 to 11 may be used bye other macros. Table 8.1 give infor-
mation about possible dependencies. Anyway, if your application contains no call to the macros
mentionned in this table, you can make use of MPIOSM pins freely.

MPIOSM pins Attached signal Macros
0 SPI encoder SPIencoder it ,

reference reset SPIencoder and
genSPIencoder

1 SPI encoder DACit ,
LDR signal DACand

genDAC
2 SPI encoder DACit ,

SCK signal DACand
genDAC

3 SPI encoder DACit ,
SDI signal DACand

genDAC
From 4 to 7 Amp. direction bit dirAmp

(from axis 0 to 3)
From 8 to 11 Amp. validation bit inhAmp ,

(from axis 0 to 3) WatchDog it and
genWatchDog

From 12 to 15 (none) (none)

Table 8.1: MPIOSM pins software dependencies

39

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

40

Chapter 9

Pulse width modulation generator

PWM, or Pulse Width Modulation, is a method of controlling the amount of power to a load
without having to dissipate any power in the load driver. For instance, PWM signals can be used
to drive speed controllers or motor amplifiers.

9.1 The genPWMgeneric macro

9.1.1 The INIT option

genPWM(INIT,PWMchannel,periodDivider)

Called with $1 equal to INIT , this macro initializes the MIOS Pulse Width Modulation Submod-
ule. Identifier of the PWM channel to configure is passed using argument PWMchannel. PWM
channels are numbered from 0 to 3 (for submodules MPWMSM0 to MPWMSM3) and from 4 to 7
(for submodules MPWMSM16 to MPWMSM19). Argument periodDivider is used for setting
the period of the PWM signal generated by the given MPWMSM module. Period is calculated as
follows:

TPWM = periodDivider ∗ 2
fSYS

Where TPWM is the PWM signal period and fSYS is the system clock frequency (here 40 MHz).
Here is an example of M4 macro-call used for initializing PWM submodule 1 with a PWM

period of 50 µs:

> genPWM(INIT, 1, 1000)

Please refer to MPC555 User’s manual [2] subsection 15.12.1 for further details.

9.1.2 The LOOPoption

genPWM(LOOP,PWMchannel,periodDivider,?int)

Called with $1 equal to LOOP, this macro drive the given MPWMSM submodule output PWM
signal. MPWMSM submodule number is passed using argument PWMchannel (between 0 and
7). Argument periodDivider is used for setting the period of the PWM signal generated (as
described above in subsection 9.1.1). PWM pulse width is passed, as input, using the third ar-
gument (int). int is a 32-bit positive integer variable which values may be between 0 and
+periodDivider (corresponding to pulse width from 0 to TPWM).

Here is an example of M4 macro-call that drives, on channel 1, a PWM signal (of a 50µs period)
which duty-cycle values is to be found into variable val :

> genPWM(LOOP, 1, 1000, val)

41

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

9.1.3 The ENDoption

genPWM(END,PWMchannel,periodDivider)

Called with $1 equal to END, this macro reset PWM channel which number and duty cycle are
passed using arguments PWMchannel and periodDivider . It consistes of reseting any signal
generation, by forcing PWM pulse width to zero.

Here is an example of M4 macro-call used for reseting PWM submodule 1, previously config-
urated with a PWM period of 50 µs:

> genPWM(INIT, 1, 1000)

9.2 The PWMuser macro

PWM(PWMchannel,periodDivider,?pulseWidth)

This user macro implements PWM output signal writing. PWMchannel argument is used for
passing the user number of the PWM channel to drive (available values are between 0 and 3, cur-
rently other channels are not available). periodDivider argument allow to specify the PWM
signal period (refer to above section 9.1.1 for details about Period calculation). Finally, the third
argument, pulseWidth , is used for passing as input the 32-bit integer variable containing the
pulse width value of the desired PWM signal.

Depending on the SynDEx macro generation context (variable MGC), PWMmacro call performs
PWM channel initialization, PWM output signal writing (during main loop execution) and finally
PWM channel reset (during application finalization step).

Here is a piece of M4 macro executive that write a PWM signal (of a 50µs period) on channel
3 (i.e. MPWMSM3 output pin), which duty-cycle value is found into variable val :.

> alloc_(int, val)
> main_
> dnl Initialization step (MGC==INIT)
> PWM(3, 1000)
> loop_
> dnl Loop execution (MGC==LOOP)
> PWM(3, 1000, val)
> endloop_
> dnl Finalization step (MGC==END)
> PWM(3, 1000)
> endmain_

9.3 The PWMit user macro

PWM_it_(PWMchannel,periodDivider,?pulseWidth)

Same as PWMbut executed under timer interrupt. Code generated for this macro is included into
PIT handler. Thus pulseWidth 32-bit integer variable content is read asynchronously each time
PIT trigs an interrupt.

42

Chapter 10

Fast quadrature decode TPU function
(for incremental encoder support)

The fast quadrature decode function is a TPU input function that uses two channels to decode a
pair of out-of-phase signals in order to increment or decrement a (position) counter. It is partic-
ularly useful for decoding position and direction information from a slotted encoder in motion
control systems.

10.1 The genTPU FQDgeneric macro

10.1.1 The INIT option

genTPU_FQD(INIT,encoderID)

Called with $1 equal to INIT , this macro initializes TPU1 functions for fast decoding incremen-
tal encoders quadrature. Argument encoderID is used for passing the incremental encoder
identifier. Only incremental encoders numbered from 0 to 3 can be configured. Let us remark
that performing such initialization also reset the position counter (i.e. after initialization, posi-
tion counter is equal to 0). For more details about fast quadrature decoding, refer to Motorola
application note TPUPN02/D [3].

Here is an example of M4 macro-call that initializes TPU functions for reading incremental
encoder 3 position.

> genTPU_FQD(INIT, 3)

Refer to Motorola application note TPUPN02/D [3] section 8 and 9 for a detailled description
of TPU fast quadrature decode initialization.

10.1.2 The LOOPoption

genTPU_FQD(LOOP,encoderID,!int)

Called with $1 equal to LOOP, this macro reads incremental encoder signals and performs fast
quadrature decoding. Desired encoder identifier is passed using encoderID argument. Avail-
able encoders are numbered from 0 to 3. Incremental encoder position, resulting from quadrature
decoding, is returned in a 32-bit integer output variable (passed using argument int).

1 Time Processor Unit (refer to MPC555 User’s manual [2] section 17 for further details

43

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Let us note that we intentionally reset position counter after reading. Hence the returned
value correspond to the number of encoder impulses counted since last iteration. Programmers
intending to use this macros for absolute position computation will have to perform the accumu-
lation of returned values.

Refer to Motorola application note TPUPN02/D [3] section 8 and 9 for a detailled description
of TPU fast quadrature decode algorithm.

Here is an example of M4 macro-call that reads incremental encoder position (with for in-
stance encoder ID 3) and that returns the result into variable res :

> genTPU_FQD(LOOP, 3, res)

10.1.3 The ENDoption

genTPU_FQD(END,encoderID)

Called with $1 equal to END, this macro resets TPU fast quadrature functions. It disables the
TPU FQD channel priority previously assigned to counting and decoding operations (refer to
TPUPN02/D [3] section 5).

Here is an example of M4 macro-call that resets TPU FQD channel 0:

> genTPU_FQD(END, 0)

10.2 The TPU FQDuser macro

TPU_FQD(encoderID,!counter)

This user macro implements position reading operation for incremental encoders. Argument
encoderID is used for passing ID of the desired encoder (possible encoder ID are 0, 1, 2 or
3). Encoder position resulting from fast quadrature decoding is a 16-bit signed integer (values
between -32768 and +32767). Position value is aligned and stored into the 32-bit integer output
variable passed using argument counter .

The returned encoder position corresponds to the number of encoder impulses counted since
last iteration. Let us remark that when maximum position count is reached (i.e. +32767) counter
overflows and switchs back to -32768. The same way, when minimun position count is reached
(i.e. -32768) counter underflows and switchs to +32767.

Depending on the SynDEx macro generation context (variable MGC), TPU FQDmacro call per-
forms TPU FQD channel initialization, encoder position acquisition (during main loop execution)
and finally TPU FQD channel reset (during application finalization step).

Here is a piece of M4 macro-call that reads position counter of incremental encoder 1 and
returns it into variable res :

> alloc_(int, res)
> main_
> dnl Initialization step (MGC==INIT)
> TPU_FQD(1)
> loop_
> dnl Loop execution (MGC==LOOP)
> TPU_FQD(1, res)
> endloop_
> dnl Finalization step (MGC==END)
> TPU_FQD(1)
> endmain_

44

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Warning: be careful not to use encoder with too many impulses per revolution. If the sum
of used encoder signals frequencies is higher than the TPU one you will get badly decoded val-
ues. It is highly recommended to check encoder fast quadradure decode returned results before
implementing axis control!

10.3 The TPU FQDit user macro

TPU_FQD_it_(encoderID,!counter)

Same as TPU FQDbut executed under timer interrupt. Code generated for this macro is included
into PIT handler. Thus counter 32-bit integer variable content is updated asynchronously each
time PIT trigs an interrupt.

45

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

46

Chapter 11

Queued serial peripheral interface

The queued serial peripheral interface (QSPI) is used to communicate with external devices
through a synchronous serial bus. The QSPI is fully compatible with SPI sys-tems found on
other Motorola products, but has enhanced capabilities.

11.1 The QSPI generic macro

11.1.1 The INIT option

genQSPI(INIT)

Called with $1 equal to INIT , this macro initializes the queued serial peripheral interface. Typi-
cally, this macro is used each time you want to implement support for a new SPI device. Indeed,
it performs the convenient configurations required for data transmissions between the MPC555
QSPI module and external SPI devices. For instance, this macro has been used for implementing
SPI absolute encoder support initialisation step (see genSPIencoder at subsection 17.1.1)

Here is an example of M4 macro-call that initializes QSPI module:

> genQSPI(INIT)

Refer to MPC555 User’s manual [2] section 14.7 for further details about QSPI module initial-
ization.

11.1.2 The ENDoption

genQSPI(END)

Called with $1 equal to END, this macro reset the queued serial peripheral interface. Typically,
this macro is used when no more interaction with SPI devices is required. It resets all QSPI
module configuration registers and then halts it. For instance, this macro has been used for
implementing SPI absolute encoder support finalization step (see genSPIencoder at subsec-
tion 17.1.1)

Here is an example of M4 macro-call that resets QSPI module:

> genQSPI(END)

Refer to MPC555 User’s manual [2] section 14.7 for further details about QSPI module reset.

47

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

48

Chapter 12

Serial port support (POLLING
implementation)

MPC555 provides user with serial communication capabilities. It includes a dual, independent,
serial communication interface (DSCI) that allows to communicate with external devices through
an asynchronous serial bus. The two SCI modules are functionally equivalents. Several transfer
rates, clocking, and interrupt-driven communication options are available at user level.

In the following sections, when user manipulates character strings, we assume that he re-
spects the convention depicted on figure 12.1. That is to say that character strings are expected to
be ended by a null character (of ASCII code 0). This way of proceeding is commonly used with
the majority of operating systems or other serial systems dealing with strings.

First
Character

Last
Character

Null Character
Marking String End

H E L L O W O R L D 0

Figure 12.1: Description of a character string

In this chapter, serial communication interface (SCI) is implemented using polling method.
By “polling” we mean that incoming data on the port are detected by infinite checking loop and
not using SCI interrupts. The major part of the macros decribed here is not intended to be used by
programmers. They are generally use for coding other convenient macros. User oriented macros,
making use of SCI interrupts, are presented on chapter 13.

12.1 The genSCIpoll generic macro

12.1.1 The INIT option

genSCIpoll(INIT,SCIport,baud,n-bits,parity)

Called with $1 equal to INIT , this macro initializes the SCI module which identifier is passed
using SCIport argument. Two SCI modules are available SCI1 (i.e. SCIport = 1) and SCI2 (i.e.
SCIport = 2). User can access various configurations through the third last arguments.

49

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Argument baud allows to specify the desired serial communication baud rate. Please refer to
table 12.1 that lists the possible values. Argument n-bits defines the desired SCI frame length:
set to 10, n-bits configures SCI module in 10-bits SCI frame mode, while set to 11, n-bits
configures SCI module in 11-bits SCI frame mode. Finally, parity argument is used for setting
connexion parity: possible values are 0, 1 and 2, corresponding respectively to no parity, even
parity and odd parity modes. All these modes can not be freely combined each other. Refer to
table 12.2 that reports the possible configurations1.

This macro also attach to the initialized serial port a round-robin buffer fully dedicated to
receive operations. Round-robin buffer default size is fixed to 256 bytes but could be modified.
For, user has to redefine the M4 variable SCI rxbuf size inside its own application dependent
macro-executive file. For instance, the following definition sets buffer size to 1024 bytes:

> define(SCI_rxbuf_size,1024)

baud argument value Actual baud rate in bits.s−1) Error (%)
1250000 1,250,000.00 0.00
115200 113,636.36 -1.37
57600 56,818.18 -1.36
38400 37,878.79 -1.36
32768 32,894.74 0.39
28800 29,069.77 0.94
19200 19,230.77 0.16
14400 14,367.81 -0.22
9600 9,615.38 0.16
4800 4,807.69 0.16
2400 2,399.23 -0.03
1200 1,199.62 -0.03
600 600.09 0.02
300 299.98 -0.01

Table 12.1: List of the baud rates and related percent error

SCI frame length Parity Resulting serial frame format
10 bits (10) 0 none (0) 8 data bits and 2 stop bits
10 bits (10) even (1) 7 data bits, 1 parity bit and 2 stop bits
10 bits (10) odd (2) 7 data bits, 1 parity bit and 2 stop bits
11 bits (11) none (0) 9 data bits and 2 stop bits
11 bits (11) even (1) 8 data bits, 1 parity bit and 2 stop bits
11 bits (11) odd (2) 8 data bits, 1 parity bit and 2 stop bits

Table 12.2: List of the possible SCI module configurations

Here is an example of M4 macro-call that initializes SCI module 1 with a 4800 baud rate, odd
parity and 7 data bits serial frame format:

> genSCIpoll(INIT,1,4800,10,2)

Further details about SCI modules configuration can be found in MPC555 User’s manual [2]
sections 14.8.2 and 14.8.3.

1Let us note that the most uncommon configuration mode (of frame format 9 data bits and 2 stop bits) has not been
tested.

50

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

12.1.2 The RDoption

genSCIpoll(RD,SCIport,baud,n-bits,parity)

alled with $1 equal to RD, this macro allows to fill the round-robin buffer dedicated to current
serial port receive operations.

Offset
Current

D CA B

Round-Robin Buffer

Offset 0 Offset 255

Incomming Data

Serial Port Interface

Figure 12.2: Serial port round-robin buffer

Initially, round-robin buffer pointer is located at offset 0. Each incoming character detected on
the current serial port is immediately stored into the round-rubin buffer. Once the character has
been stored at the pointed buffer address, round-robin buffer pointer is incremented awaiting
next character. When buffer pointer reach buffer end (by default offset 255), next incrementation
make it switch back to offset 0. Warning: if data stored has not been read when the buffer over-
flows, they are inevitablly overwritten (see figure 12.2). For instance, let us assume that unread
data location begins at offset n, that buffer pointer has already switched back to offset 0 and that
it currently moves toward offset n storing incoming characters. Then, data begining at offset n,
may be accessed while buffer pointer differs from offset n address. As soon as buffer pointer
refers to offset n or further, data are overwritten and may not be recovered.

Details about SCIport , tt baud, n-bits and parity arguments settings are given above at
subsection 12.1.1.

Here is an example of M4 macro-call that fills the round-robin buffer allocated for receive
operations on serial port 1. Serial port 1 is assumed to be configurated with a 4800 baud rate, odd
parity and 7 data bits serial frame format:

> genSCIpoll(RD,1,4800,10,2)

12.1.3 The WRCoption

genSCIpoll(WRC,SCIport,baud,n-bits,parity,?int)

Called with $1 equal to WRC, this macro can be used for testing serial port (of ID SCIport)
configuration. Configuration parameters passed to the macros are used the same way as they are
in the macros described above. The last input argument int indicates the decimal value of the
ASCII character intended to be written on the serial port. Note, that int is a 32-bits integer.

Here is an example of M4 macro-call that writes an ‘A’ on serial port 1. As before, in this
example, serial port 1 is assumed to be configurated with a 4800 baud rate, odd parity and 7 data
bits serial frame format:

> alloc_(int,val); li r0,65; B(stw r0,val) dnl 65 is the A ASCII decimal code.
> genSCIpoll(WRC,1,4800,10,2,val)

51

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

12.1.4 The WRBoption

genSCIpoll(WRB,SCIport,baud,n-bits,parity,?int)

Called with $1 equal to WRB, this macro is used for writing, on serial port SCIport , the last
received character string, stored into its allocated round-robin buffer. This macro is also a demo
macro aiming to control if incoming character strings are correctly read and stored into the round-
robin buffer.

Here is an example of M4 macro-call that writes on serial port 1 the last character string
received on it. As before, in this example, serial port 1 is assumed to be configurated with a 4800
baud rate, odd parity and 7 data bits serial frame format:

> genSCIpoll(WRB,1,4800,10,2)

12.1.5 The STBoption

genSCIpoll(STB,SCIport,baud,n-bits,parity,!buf)

Called with $1 equal to STB, this macro allows to copy the last character string received on serial
port SCIport into a buffer. The buffer to fill is passed using the last argument buf .

Be careful. Let us remark that no verification is done at that level: thus, the user buffer is ex-
pected to be large enough to receive the character string. Otherwise, contiguous data, following
user buffer buf , may be affected.

Here is an example of M4 macro-call that fills a 256-bytes user buffer (named my buf) with
the last character string received on serial port 1. In this example, serial port 1 is assumed to be
configurated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> dnl Allocate the 256-characters buffer my_buf.
> alloc_(char,my_buf,256)
> genSCIpoll(STB,1,4800,10,2,my_buf)

12.1.6 The STNoption

genSCIpoll(STN,SCIport,baud,n-bits,parity,!buf,n_char)

Called with $1 equal to STN, this macro allows to copy, into a user buffer, a given number of
characters from the serial port SCIport round-robin buffer. This copy starts from the first unread
character (available in serial port SCIport the round-robin buffer) and stops when it reaches the
given amount of characters. The buffer to fill is passed using the 6th input argument buf , while
the number of characters to copy is passed using the last argument n char . Argument n char
is expected to be a positive integer. If n char is greater than the number of characters currently
available in the round-robin buffer, buf stays unchanged.

Be careful. Let us remark that no verification is done at that level: thus, the user buffer is
expected to be large enough to receive the specified number of character. Otherwise, contiguous
data, following user buffer buf , may be affected.

Here is an example of M4 macro-call that fills a 256-bytes user buffer (named my buf) with
the last 10 characters received on serial port 1. In this example, serial port 1 is assumed to be
configurated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> dnl Allocate the 256-characters buffer my_buf.
> alloc_(char,my_buf,256)
> genSCIpoll(STN,1,4800,10,2,my_buf,10)

52

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

12.1.7 The WRAoption

genSCIpoll(WRA,SCIport,baud,n-bits,parity,?int)

Called with $1 equal to WRA, this macro is used for writing, on serial port SCIport , the character
string, stored into the buffer which address is passed using the last input argument int . To this
aim, int is expected to be 32-bit integer variable containing the buffer address. This macro is
mainly use for internal coding or for coding other serial port operation.

Be careful. Let us remark that no verification is done at that level: if int contains a bad value
(i.e. that corresponds to no physical memory or that indicates an other location) your program
may crash or send through the serial port unexpected data.

Here is an example of M4 macro-call that writes on serial port 1 the character string contained
in a buffer which address is 0x003F993. As before, in this example, serial port 1 is assumed to be
configurated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> dnl Allocate integer variable var
> alloc_(int,var)
> dnl Now set var to buffer address.
> li r0,0x003F993; B(stw r0, var)
> genSCIpoll(WRA,1,4800,10,2,var)

Warning: be sure that the string you want to write is ended by a null character (of ASCII code
0). The null character, well marking string end, is used for stopping string reading process. Thus
if no null character is to be found, macro will read unexpected character values over string end
until it encounters an other zero in memory. Refer to figure 12.1.

12.1.8 The WRSoption

genSCIpoll(WRS,SCIport,baud,n-bits,parity,?char)

Called with $1 equal to WRS, this macro is used for writing, on serial port SCIport , the character
string, stored into a given buffer. This buffer is passed using the last input argument char , which
is the the first character of the string. Be careful. Let us remark that no verification is done at that
level: if char contains a bad value (i.e. that corresponds to no physical memory or that indicates
an other location) your program may crash or send through the serial port unexpected data.

Let us focus on the following example. Let my buf be a character buffer previously filled
using a genSCIpoll(STB,...) macro-call. Here is the way to use WRSoption for writing on
serial port 1 the string contained in my buf . As before, in this example, serial port 1 is configu-
rated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> dnl Allocate the 256-characters buffer my_buf.
> alloc_(char,my_buf,256)
> dnl Fill it with STB option.
> genSCIpoll(STB,1,4800,10,2,my_buf)
> dnl Now, write my_buf content on serial port 1.
> genSCIpoll(WRS,1,4800,10,2,my_buf)

Warning: be sure that the string you want to write is ended by a null character (of ASCII code
0). The null character, well marking string end, is used for stopping string reading process. Thus
if no null character is to be found, macro will read unexpected character values over string end
until it encounters an other zero in memory. Refer to figure 12.1.

53

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

12.1.9 The WRNoption

genSCIpoll(WRN,SCIport,baud,n-bits,parity,?char,?n_char)

Called with $1 equal to WRN, this macro is used for writing, on serial port SCIport , n char
characters of the string, stored into the given buffer. This buffer is passed using the 6th input
argument char , which is the the first character of the string. While, n char argument is expected
to be a positive integer. If n char is greater than the number of characters currently available in
the round-robin buffer, this call will write on serial port unexpected data

Be careful. Let us remark that no verification is done at that level: if char contains a bad value
(i.e. that corresponds to no physical memory or that indicates an other location) your program
may crash or send through the serial port unexpected data.

Let us focus on the following example. Let my buf be a character buffer previously filled
using a genSCIpoll(STB,...) macro-call. Here is the way to use WRNoption for writing on
serial port 1, 10 characters of the the string contained in my buf . As before, in this example, serial
port 1 is configurated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> dnl Allocate the 256-characters buffer my_buf.
> alloc_(char,my_buf,256)
> dnl Fill it with STB option.
> genSCIpoll(STB,1,4800,10,2,my_buf)
> dnl Now, write my_buf content on serial port 1.
> genSCIpoll(WRN,1,4800,10,2,my_buf,10)

12.1.10 The ENDoption

genSCIpoll(END,SCIport)

Called with $1 equal to ENDthis macro resets the SCI module which identifier is passed using
SCIport argument. Basically, it sets the convenient SCI control register (SCCxR1) to default
value. As before, possible SCIport values are 1 or 2, respectively for serial ports 1 or 2.

Here is an example of M4 macro-call that reset serial port 1:

> genSCIpoll(END,1)

Refer to MPC555 User’s manual [2] section 14.8.3 for further details).

54

Chapter 13

Serial port support (interrupt
handling implementation)

This chapter introduces user oriented macros for manipulating MPC555 serial communication
interface (SCI). These macros implement SCI support using interrupt handling method. This
technique allows to detect incoming data on serial port by triggering SCI module interrupt, what
saves a lot of computation band-width compared with polling techniques.

13.1 The genSCI it generic macro

13.1.1 The INIT option

genSCI_it_(INIT,SCIport,baud,n-bits,parity)

Called with $1 equal to INIT this macro initializes the serial port which identifier is passed
using argument SCIport (possible values are 1 and 2 for respectively serial ports 1 and 2). The
following arguments (baud , n-bits and parity) are used for serial port configuration purpose.
Please refer to subsection 12.1.1 for details about how to set these parameters.

This macros also installs the corresponding SCI module interrupt handler. This handler is in
charge of reading on the serial port (of ID SCIport) incoming data, each time an SCI interrupt
is detected. Once read, handler code appends the data to the round-robin buffer content. Hence,
data reading operations are not done by user commands, but perfomed asynchronously and
automatically by the handler. Thus, user does not have to take care about incoming data, he just
has to read the round-robin buffer content. Please refer to subsection 13.2 that explains how user
can access strings read by the handler.

Here is an example of M4 macro-call that performs serial port 1 initialization, interrupt han-
dler installation and allocation for its proper round-robin buffer. Here, serial port 1 is configu-
rated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> genSCI_it_(INIT,1,4800,10,2)

13.1.2 The ENDoption

genSCI_it_(INIT,SCIport,baud,n-bits,parity)

Called with $1 equal to ENDthis macro terminates activity of the serial port (of ID SCIport)
and, consequently, activity of the corresponding interrupt handler.

55

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Let us remark that this macro call does not reset the round-robin buffer attached to the serial
port. Hence, data stored into the buffer still may be accessed even after the serial port has been
closed. Anyway, if a new initialization is done (following such reset step) round-robin buffer
pointer will be set back to buffer offset 0.

Here is an example of M4 macro-call that performs serial port 1 reset.

> genSCI_it_(END,1,4800,10,2)

Let us note that, genSCI it macro only aims to be used for coding other macros, but not to
be used in user programs. For instance, this macros is involved in the SCI it gets user macro
implementation. Refer to section 13.2 for more details.

13.2 The SCI it gets user macro

SCI_it_gets(SCIport,baud,n-bits,parity,!buf)

This user macro implements serial port operations for reading incoming character strings. User
can specify the desired serial port using SCIport argument (of value 1 or 2). The following argu-
ments (baud , n-bits and parity) are used for serial port configuration purpose. Please refer
to subsection 12.1.1 for details about how to set these parameters. Incoming character strings are
first stored into the serial port associated round-robin buffer and then copied into the user buffer
buf (passed as the last argument).

Depending on the macro generation context (variable MGC), SCI it gets macro call per-
forms serial port initialization, character strings acquisitions (during main loop execution) and
finally serial port reset (during application finalization step).

Here is a piece of M4 macro executive that fills user buffer buf with each new incomming
character strings received on serial port 1. In this example, serial port 1 is assumed to be config-
urated with a 4800 baud rate, odd parity and 7 data bits serial frame format:

> alloc_(char,buf,256)
> main_
> dnl Initialization step (MGC==INIT)
> SCI_it_gets(1,4800,10,2)
> loop_
> dnl Loop execution (MGC==LOOP)
> SCI_it_gets(1,4800,10,2,buf)
> endloop_
> dnl Finalization step (MGC==END)
> SCI_it_gets(1,4800,10,2)
> endmain_

13.3 Note for users

Let us remark that incoming character strings are not always ended by the null character (ASCII
code 0). SCI macros implementing reading operation have to be informed of the character code
used for marking string end. To this aim, user is expected to define the macro SCI1ENDCHR
(resp. SCI2ENDCHR) each time he invokes reading operations on SCI1 (resp. SCI2) serial port.
This macro should contain the decimal ASCII value of the character marking string end. Defining
this macro may be done as follow:

> dnl Character of ASCII code (10)d marks SCI2 incoming strings end
> define(‘SCI2ENDCHR’,10)

56

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

13.4 The SCI puts user macro

SCI_puts(SCIport,baud,n-bits,parity,?buf)

This user macro implements operations for writing character strings on serial port. User can
specify the desired serial port using SCIport argument (of value 1 or 2). The following argu-
ments (baud , n-bits and parity) are used for serial port configuration purpose. Please refer
to subsection 12.1.1 for details about how to set these parameters. The string to be sent should
be located in the user buffer buf (passed as the last argument). As mentionned in the previous
chapter introduction, do not forget to end strings with a null character (of ASCII code 0).

Depending on the macro generation context (variable MGC), SCI puts macro call performs
serial port initialization, character strings send (during main loop execution) and finally serial
port reset (during application finalization step).

Here is a piece of M4 macro executive that sends user buffer buf content on serial port 1. In
this example, serial port 1 is assumed to be configurated with a 4800 baud rate, odd parity and 7
data bits serial frame format:

> alloc_(char,buf,256)
> main_
> dnl Initialization step (MGC==INIT)
> SCI_puts(1,4800,10,2)
> loop_
> dnl Loop execution (MGC==LOOP)
> SCI_puts(1,4800,10,2,buf)
> endloop_
> dnl Finalization step (MGC==END)
> SCI_puts(1,4800,10,2)
> endmain_

Very important remark

When using one (or more) SCI puts macro call(s), you should be very careful of the time delay
required for realizing all the serial transmissions. In other words, serial transmissions time delay
must respect the real-time constraints of your application. For instance, considering an applica-
tion which real-time period is 10 ms, using a 9600 bauds, 8 data bits and no parity serial port
setting, you can not send more than 9 characters each period. If you do not respect this, your
application will crash.

57

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

58

Part III

Robosoft board specific macros

59

Chapter 14

Robosoft board initializations

As a proprietary control system, Robosoft board embeds no commercial operating system. Hence,
board initialization step correspond to no standard procedure. For, specific settings have to be
performed before any software execution, both insuring the board to be an a proper state and
enabling all board features.

14.1 The main ini macro

main_ini_()

This macro should never be used by programmers. It is an internal SynDEx macro, automatically
called when generating MPC555 executive. This macro is presented here only for information.
Indeed Robosoft board settings may help expert programmers to get a deep understanding of
both the board and SynDEx MPC555 kernel. Reading this section is not of interest for other
programmers.

First, MPC555 system configuration is done setting SIU Module Configuration Register (SI-
UMCR, refer to MPC555 User’s manual [2] subsection 6.13.1.1). SC (SIUMCR bits 17 to 18) is set to
1, what activates “multiple chip, 16-bits port size” mode (refer to [2] Table 6-9 for corresponding
pins configuration). MLRC (SIUMCR 20 to 21) is set to 2, what makes IRQ pin configured as
general-purpose I/O (refer to [2] Table 6-10 for corresponding pins configuration).

Setting the external master control register (EMCR, refer to [2] subsection 6.13.1.3), we se-
lect the external master modes and determine the internal bus attributes for external-to-internal
accesses. Here we keep EMCR reset value except for SIZE (EMCR bit 21 to 20) we set to 2, corre-
sponding to an half-word (2 bytes) internal bus attributes configuration.

What follows is used for controlling the memory bank 1 controller. For, we have to set BR1
register (refer to [2] subsection 10.8.3). In order to indicate that BR and OR are valid, we set V
(BR1 bit 31) to 1. With BA (BR1 bits 0 to 15) we configure memory bank 1 base address to 0xFFF0.
BI (BR1 bit 30) set to 1 indicates memory bank 1 does not support burst accesses. Next, WEBS
(BR1 bit 26) set to 1, makes the he WE/BE pads operate as BE. Finally, PS (BR1 bit 20 to 21) set to
2, configures port size to 16-bit.

In association with BR1 register, the memory controller option registers 1 (OR1) has to be set
(refer to [2] subsection 10.8.4). AM (OR1 bits 0 to 15) set to 0xFFFE, allows masking of any cor-
responding bits in the associated base register. Masking the address bits independently allows
external devices of different size address ranges to be used. Any clear bit masks the correspond-
ing address bit. Any set bit causes the corresponding address bit to be used in comparison with
the address pins. Next, ATM (OR1 bits 17 to 19) is set to 0 allows to ignore address type codes
as part of the address comparison. We set CSNT (OR1 bit 20) to 0, forcing CS/WE to be negated
normally. Setting ACS (OR1 bits 21 to 22) to 0 indicates that CS is asserted at the same time that
the address lines are valid. EHTR (OR1 bit 23) is set to 0, configuring memory controller for

61

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

generating normal timing. Finally, SCY (OR1 bit 24 to 27) is set to 0, specifying that 0 wait states
should be inserted in the single cycle, or in the first beat of a burst, when the GPCM handles the
external memory access.

In order to enable the MPC555 time base and decrementer, we set the time base control and
status register (TBSCR, refer to [2] subsection 6.13.4.4). To this aim, TBE (TBSCR bit 15) is set to 1.

Now, we need to indicate IMB frequency. For, we have to set the pad module configuration
register (PDMCR, refer to [2] subsection 2.4.2). SLRC0 (PDMCR bit 0) set to 1, configures normal
slew rate for TPU, QADC, USIU (SGPIO). SLRC1 (PDMCR bit 1) set to 1, configures normal slew
rate for QSPI and TouCAN modules. SLRC2 (PDMCR bit 2) set to 1, configures normal slew rate
for QSCI. SLRC3 (PDMCR bit 3) set to 1, configures normal slew rate for MIOS. Finally, PRDS
(PDMCR bit 6) is set to 0, enabling pull-up/pull-down devices.

Last, still remains the PLL configuration. For, we have to set the PLL, low-power, and reset-
control register (PLPRCR, refer to [2] subsection 8.12.2). We need to keep power on time reset
values except for the following bits: MF (PLPRCR bits 0 to 11) and TEXPS (PLPRCR bit 17). MF
is set to 9, dividing the feedback signal by 10 for the PLL the phase comparator. TEXPS is set to
0, indicating timer expired status bit is negated in deep-sleep mode.

62

Chapter 15

Digital to analog converter

Digital to analog conversion is a process in which a binary signal (defined over two states) are
converted into signals having a theoretically infinite number of states (analog). Basically, digital
to analog conversion is the opposite of analog to digital conversion. In most cases, if an analog to
digital converter (ADC) is placed after a DAC, the digital signal output is identical to the digital
signal input. Also, in most instances when a DAC is placed after an ADC, the analog signal
output is identical to the analog signal input.

15.1 The genDACgeneric macro

15.1.1 The INIT option

genDAC(INIT)

Called with $1 equal to INIT , this macro initializes the Robosoft board DAC (Digital-to-Analog
Converter) chip. DAC chip actually in use is from Analog Device and is referenced as DAC8420
(refer to DAC8420 datasheet [4] for further details). At initialization step, let us remark that all
DAC channels are initialized regardless to the channels that will really be used.

As a serial converter, DAC8420 access is provided by MIOS parallel port I/O submodule
(MPIOSM, refer to MPC555 User’s manual [2]). MPIOSM pins D0, D1 and D2 are initialized for
this. Pin D0 is dedicated to serial data transfer, pin D1 is dedicated to clock signal generation and
pin D2 used for loading data into the DAC8420.

Here is an example of M4 macro-call that initializes DAC chip:

> genDAC(INIT)

15.1.2 The LOOPoption

genDAC(LOOP, DACchannel, ?int)

Called with $1 equal to LOOP, this macro allows to drive an analog signal on a given DAC chan-
nel (which number is passed using argument DACchannel). Accessible DAC channels are num-
bered from 0 to 3. Correspondance between analog channels numbers and DAC8420 hardware
pins is given in table 15.1. Also refer to DAC8420 datasheet [4] page 6 for pin description and
location. The last input argument (int) is used for passing the analog signal level. int is a 32-bit
integer which values are expected to be from 0 to 0x0FFF (i.e. from 0 to 4095), corresponding to
analog output voltages from -10V to +10V.

Here is an example of M4 macro-call that drives, on DAC channel 1, a continuous signal,
which values is to be found into variable val :

63

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

DAC channel number Reference to DAC8420 chip
0 VOUTA pin 7
1 VOUTB pin 6
2 VOUTC pin 3
3 VOUTD pin 2

Table 15.1: DAC Channel number assignments and pin designations

> genDAC(LOOP,1,val)

An exhaustive description of serialized data transfers needed for driving the DAC is given on
DAC8420 datasheet [4] pages 6 and 15. You can also find this in the RSB.m4x macro executive
source code in the section named “Digital to analog converter” of the “Standard on-board I/O
macros” part.

15.1.3 The ENDoption

genDAC(END, DACchannel)

Called with $1 equal to END, this macro reset analog output channel which number is passed
using argument DACchannel (of value from 0 to 3). It consistes of reseting any signal generation,
by forcing the selected analog output to zero.

Here is an example of M4 macro-call that resets DAC channel 1:

> genDAC(END,1)

15.2 The DACuser macro

DAC(DACchannel, ?analogValue)

This user macro implements DAC writing operations. Argument DACchannel is used for select-
ing the desired DAC channel (numbered from 0 to 3). Voltage value, of the signal to be driven on
the selected DAC channel, is passed using the 32-bit integer input variable analogValue .

Depending on the SynDEx macro generation context (variable MGC), DACmacro call per-
forms DAC channel initialization, DAC output signal writing (during main loop execution) and
finally DAC channel reset (during application finalization step).

Here is a piece of M4 macro executive that writes on DAC channel 1 a continuous signal,
which voltage value is to be found into variable val :

> alloc_(int, val)
> main_
> dnl Initialization step (MGC==INIT)
> DAC(1)
> loop_
> dnl Loop execution (MGC==LOOP)
> DAC(1, val)
> endloop_
> dnl Finalization step (MGC==END)
> DAC(1)
> endmain_

64

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

15.3 The DACit user macro

DAC_it_(DACchannel, ?analogValue)

Same as DACmacro, but executed under timer interrupt. Code generated for this macro is
included into PIT handler. Thus analogValue 32-bit integer variable content is read asyn-
chronously each time PIT trigs an interrupt.

65

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

66

Chapter 16

On-board LED interface

16.1 The genLED generic macro

16.1.1 The INIT option

genLED(INIT)

Called with $1 equal to INIT , this macro initializes the Robosoft board LED. Connected to QSPI
module pin PCS1 (refer to MPC555 User’s manual [2] Table 14-8), this macro performs QSPI
module initialization, by calling the QSPI macro (refer to subsection 11.1.1). At that step, LED
initialization automalically reset LED state, i.e. it sets LED off.

Here is an example of M4 macro-call that initializes the on-board LED:

> genLED(INIT)

16.1.2 The ONoption

genLED(ON)

Called with $1 equal to ON, this macro set the Robosoft board LED on.
Here is an example of M4 macro-call that sets the on-board LED on:

> genLED(ON)

16.1.3 The OFFoption

genLED(OFF)

Called with $1 equal to OFF, this macro set the Robosoft board LED off.
Here is an example of M4 macro-call that sets the on-board LED off:

> genLED(OFF)

16.1.4 The LOOPoption

genLED(LOOP, ?bool)

67

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Called with $1 equal to LOOP, this macro set the Robosoft board LED on or off, depending on the
value of the 8-bit boolean input variable bool . If bool value is 0 LED is set off, else LED is set
on.

Here is an example of M4 macro-call that sets the on-board LED, depending on boolean vari-
able val value:

> genLED(LOOP, val)

16.1.5 The ENDoption

genLED(END)

Called with $1 equal to END, this macro resets the Robosoft board LED. At that step, LED is
set LED off. This macro-call also reset QSPI module by calling the QSPI macro (refer to subsec-
tion 11.1.2).

Here is an example of M4 macro-call that rests the on-board LED:

> genLED(END)

16.2 The LEDuser macro

LED(?bool)

This user macro implements LED setting operations. Input argument bool is used for passing
name of the 8-bit boolean variable that contains LED state.

Depending on the SynDEx macro generation context (variable MGC), LED macro call per-
forms on-board LED initialization, LED state setting (during main loop execution) and finally
on-board LED reset (during application finalization step).

Here is a piece of M4 macro executive that handle the on-board LED, which state value is to
be found into variable val :

> alloc_(bool, val)
> main_
> dnl Initialization step (MGC==INIT)
> LED()
> loop_
> dnl Loop execution (MGC==LOOP)
> LED(val)
> endloop_
> dnl Finalization step (MGC==END)
> LED()
> endmain_

16.3 The LED it user macro

LED_it_(?bool)

Same as LED macro, but executed under timer interrupt. Code generated for this macro is in-
cluded into PIT handler. Thus bool 8-bit boolean variable content is read asynchronously each
time PIT trigs an interrupt.

68

Chapter 17

SPI absolute encoder

17.1 The genSPIencoder generic macro

17.1.1 The INIT option

genSPIencoder(INIT)

Called with $1 equal to INIT , this macro initializes the Robosoft board absolute encoder inter-
face. Connected to QSPI module pin MISO (refer to MPC555 User’s manual [2] Table 14-8), this
macro performs QSPI module initialization, by calling the QSPI macro (refer to subsection 11.1.1).

Here is an example of M4 macro-call that initializes the on-board absolute encoder interface:

> genSPIencoder(INIT)

17.1.2 The LOOPoption

genSPIencoder(LOOP,!int)

Called with $1 equal to LOOP, this macro read absolute encoder position. Returned value is
copied into the 32-bit integer variable which name is passed using argument int . Range of val-
ues returned by this macro depends on the type of encoder you are using. For instance on CyCab
and Robucar Robosoft products, returned encoder position are between 0 and 8191 (correspond-
ing to the number of impulses got during a complete revolution).

Information related to the data serial transfer protocol, between MPC555 and absolute en-
coder device, can be found in MPC555 User’s manual [2] section 14.7.

Here is an example of M4 macro-call that reads absolute encoder position and that returns
result into variable val :

genSPIencoder(LOOP, val)

17.1.3 The ENDoption

genSPIencoder(END)

Called with $1 equal to END, this macro resets the Robosoft board absolute encoder interface.
This macro also performs QSPI module reset, by calling the QSPI macro (refer to subsection 11.1.2).

69

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

17.2 The SPIencoder user macro

SPIencoder(!int)

This user macro implements absolute encoder reading operations. Input argument int is used
for passing name of the 32-bit integer variable in which encoder position is returned. As men-
tionned above, Range of values returned by SPIencoder depends on the type of encoder you
are using. For instance on CyCab and Robucar Robosoft products, returned encoder position are
between 0 and 8191 (corresponding to the number of impulses got during a complete revolution).

Depending on the SynDEx macro generation context (variable MGC), SPIencoder macro
call performs SPI encoder initialization, SPI encoder position reading (during main loop execu-
tion) and finally SPI encoder reset (during application finalization step).

Here is a piece of M4 macro executive that reads absolute encoder position and returns it into
variable val :

> alloc_(int, val)
> main_
> dnl Initialization step (MGC==INIT)
> SPIencoder()
> loop_
> dnl Loop execution (MGC==LOOP)
> SPIencoder(val)
> endloop_
> dnl Finalization step (MGC==END)
> SPIencoder()
> endmain_

17.3 The SPIencoder it user macro

SPIencoder_it_(!int)

Same as SPIencoder macro, but executed under timer interrupt. Code generated for this macro
is included into PIT handler. Thus int 32-bit boolean variable content is read asynchronously
each time PIT trigs an interrupt.

70

Chapter 18

Power amplifier direction setting

18.1 The dirAmp generic macro

18.1.1 The INI option

dirAmp(DEF, AmpID)

Called with $1 equal to INI this macro reset all motor power amplifiers directions. This macro-
call should normally be invoked into the INIT context when coding a user macro).

Here is an example of M4 macro-call that reset all power amplifiers directions:

> dirAmp(INI)

18.1.2 The DEFoption

dirAmp(DEF, AmpID)

Called with $1 equal to DEF this macro set motor power amplifier default direction. Power
amplifier ID is passed using argument AmpID: possible values for AmpID are 0, 1, 2 or 3.

Here is an example of M4 macro-call that set power amplifier default direction for motor,
which ID is 2:

> dirAmp(DEF, 2)

18.1.3 The INV option

dirAmp(INV, AmpID)

Called with $1 equal to INV this macro set motor power amplifier opposite direction. Power
amplifier ID is passed using argument AmpID: possible values for AmpID are 0, 1, 2 or 3.

Here is an example of M4 macro-call that set power amplifier opposite direction for motor,
which ID is 2:

> dirAmp(INV, 2)

71

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

18.2 Note for users

This macro may be needed when you intend to drive motors. For instance, some PWM power
amplifiers provide user with a direction entry. With such devices, the full PWM duty-cycle range
is available for driving motor in a single direction. Thus, direction bit is used for switching motor
from one direction to an other (independently of the PWM signal value).

Last, let us note that direction signals, for motors from 0 to 3, are driven through MIOS parallel
port I/O submodule pins from 4 to 7. Please refer to MPC555 User’s manual [2] section 15.13 for
further details.

72

Chapter 19

Motor power amplifier validation

19.1 The inhAmp generic macro

19.1.1 The ENAoption

inhAmp(ENA, AmpID)

Called with $1 equal to ENAthis macro enable motor power amplifier which ID is passed using
argument AmpID. Possible values for AmpID are 0, 1, 2 or 3. Thus, this macro is said to switch on
the motor power amplifier inhibition signal.

Let us note that this macro is absolutly needed when you want to drive a motor. For security
matters, we designed our board in a way that simply driving a PWM or analog signal onto a
power amplifier is not sufficent. User has to explicitly validate the power amplifier. By the way,
non-intentional signal activity on power amplifier port may not lead to any motor moves.

In major cases, motors embedded in Robosoft products are equiped with electrically com-
manded brakes. Most of the time, inhibition signal (set using this macro) is coupled with motor
brake. Hence, if inhibition signal validate power amplifier, motor brake is released, else, if inhi-
bition signal is not active, motor brake is engaged. Thus, inhAmp(ENA) macro-call may be used
for releasing motor brake.

Here is an example of M4 macro-call that validates power amplifier for motor, which ID is 2,
and, consequently, releases its brake:

> inhAmp(ENA, 2)

19.1.2 The DIS option

inhAmp(DIS, AmpID)

Called with $1 equal to DIS this macro disable motor power amplifier which ID is passed using
argument AmpID. Possible values for AmpID are 0, 1, 2 or 3. Thus, this macro is said to switch off
the motor power amplifier inhibition signal.

Let us remark, that most often, motors embedded in Robosoft products are equiped with
electrically commanded brakes. Inhibition signal (set using this macro) is generally coupled with
motor brake. Hence, if inhibition signal validate power amplifier, motor brake is released, else, if
inhibition signal is not active, motor brake is engaged. Thus, inhAmp(DIS) macro-call may be
used for engaging motor brake.

Inhibition signals, for motors from 0 to 3, are driven through MIOS parallel port I/O sub-
module pins from 8 to 11. Please refer to MPC555 User’s manual [2] section 15.13 for further
details.

73

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Here is an example of M4 macro-call that switchs off power amplifier for motor, which ID is
2, and, consequently, engages its brake:

> inhAmp(DIS, 2)

19.2 Note for users

Let us remark that power amplifier validation state can be controlled (using inhAmp macro) only
if Robosoft software watchdog is activated (cf. chapter 20 for watchdog macros description).

Inhibition signals, for motors from 0 to 3, are driven through MIOS parallel port I/O sub-
module pins from 8 to 11. Please refer to MPC555 User’s manual [2] section 15.13 for further
details.

74

Chapter 20

Watch dog

For security purposes, Robosoft adds an hardware watch-dog mechanism on its board. This
watch-dog aims to stop motors activity when, for any reasons, running software crashes. Watch-
dog is implemented as an hadware time-out. If it is not refreshed periodically, watch-dog mech-
anism drives an output signal that forces motor power amplifiers validation to go down. By this
way the controlled system stays in a safe state, with no risk to perform hazardous motions.

20.1 The genWatchDog generic macro

20.1.1 The INIT option

genWatchDog(INIT)

Called with $1 equal to INIT , this macro initializes the Robosoft on-board watch-dog.
The watch-dog is physically connected to the chip select pin of the MPC555 memory bank

located at 0x0FF00000. A single access to this memory bank will generate a chip select and will
assert the watch-dog logic. While the watch-dog is refreshed, the MPC555 board allow motor
control. When the watch-dog is no longer refreshed, the MPC555 board disable motor control.
Thus as it shadows user inhibition signal effects, once down, watch-dog automalically engages
motors brakes.

Watch-dog logic is realized with a Philips one-shot multivibrator: 74HC4538. Refer to the
74HC4538 data-sheet [5] for more information about it. We use this logic as a retriggerable
monostable circuitry (for refreshing watch-dog). Actually, 74HC4538 chip is equiped of a 200kΩ
RX resistor and a 100nF CX capacitor (refer to the 74HC4538 data-sheet [5] page 10 for application
information). This set watch-dog refresh period to 20ms. If, for any reason, user program exceeds
this period, watch-dog goes down and disable motor control as described above.

Here is an example of M4 macro-call that initializes the Robosoft on-board watch-dog:

> genWatchDog(INIT)

Refer to MPC555 User’s manual [2] subsections 10.8.3 and 10.8.4 for further details about the
MPC555 memory controller.

20.1.2 The LOOPoption

genWatchDog(LOOP)

Called with $1 equal to LOOP, this macro allows to refresh the Robosoft on-board watch-dog.

75

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

Basically, this macro-call performs an empty read at the 0x0FF0000 MPC555 memory address.
This action generate a chip select that asserts the watch-dog logic.

Here is an example of M4 macro-call used for refreshing the Robosoft on-board watch-dog:

> genWatchDog(LOOP)

20.1.3 The ENDoption

genWatchDog(END)

Called with $1 equal to END, this macro resets the Robosoft on-board watch-dog. At the current
development stage, nothing special is done for hardware watch-dog finalization. This macro is
not of interest.

20.2 The watchDog it user macro

watchDog_it_()

This user macro implements Robosoft on-board hardware watch-dog support. As for inhAmp
macro, driving watch-dog is absolutly needed when you want to control motors. Calling watch-
Dog it user macro requires no argument.

Depending on the SynDEx macro generation context (variable MGC), watchDog it macro
call performs on-board watch-dog initialization, watch-dog refreshing (during main loop exe-
cution) and finally on-board watch-dog reset (during application finalization step). This macro
is only expected to be under timer interrupt. Code generated for this macro is included into
PIT handler. Thus watch-dog is refreshed asynchronously and periodically each time PIT trigs
an interrupt. Please, when using this macro, check if your PIT period well fits the watch-dog
refreshing constraints mentionned at subsection 20.1.1.

Here is a piece of M4 macro executive that handle the on-board watch-dog and periodically
refresh it:

> main_
> dnl Initialization step (MGC==INIT)
> watchDog_it_()
> loop_
> dnl Loop execution (MGC==LOOP)
> watchDog_it_()
> endloop_
> dnl Finalization step (MGC==END)
> watchDog_it_()
> endmain_

76

Chapter 21

Dot matrix LCD controller support

Robosoft control board is equiped with a dot matrix LCD controller. This device can freely be
used by programmers for any display operations. The following macros provide user with the
most common Hitachi HD44780U display controller commands. Specific information about this
device are found in the HD44780U data-sheet [6].

21.1 The genLCD generic macro

21.1.1 The INIT option

genLCD(INIT)

Called with $1 equal to INIT , this macro performs the HD44780U LCD controller initialization.
This macro-call, taking no more argument, is intended to be used for coding other convenient
user oriented macros.

On-board HD44780U is controlled through QADC64 module A port A. To this aim, QADC64
module A port A is configured as a digital input/output interface. For, port A pins 6 to 0 direction
is set as output, while port A pin 7 direction is set as input. With such an 8-bit interface, we
operate LCD controller in 4-bit mode. HD44780U Datasheet [6] Figure 24 details the various
steps involved in a HD44780U operating sequence. Table 21.1 gives the correspondence between
HD44780U pins and QADC64 module A port A ones.

HD44780U pins QADC64 module A port A pins
ENABLE PQA6

RS PQA5
R/W PQA4
DB7 PQA3
DB6 PQA2
DB5 PQA1
DB4 PQA0

Table 21.1: HD44780U and QADC64 module A port A pins assignments

Basically, initialization sequence, performs the following steps:

1. wait at least 40 ms after power on (i.e. after Vcc rises to 2.7 V)

2. send a first function set, with instruction byte 0x43

77

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

3. wait at least 4.1 ms (interface is 8 bits long)

4. send a second function set, with instruction byte 0x43

5. wait at least 100µs (interface is still 8 bits long)

6. send a third function set, with instruction byte 0x43 (interface is still 8 bits long)

7. send a fourth function set, with instruction byte 0x42 (interface is still 8 bits long)

8. now HD44780U controller enters the 4-bit mode interface

9. confirm we operate in 4-bit mode (setting DL to 0) and we use a 2 lines display (setting N
to 1). Sent instruction byte is 0x2C. Refer to HD44780U Datasheet [6] pages 24 and 25 for a
detailled description of available instructions.

10. set display on, cursor on and cursor blinking mode on. Sent instruction byte is 0x0F

11. set entry mode (increment address by one and shift cursor). Sent instruction byte is 0x06

After this, LCD controller is ready to receive display instructions. Instructions are sent in 4-bit
mode, i.e. each instruction is sent in two time (refer to subsection 21.1.2 for further details about
instruction writing).

21.1.2 The WRINSToption

genLCD(WRINST,?inst)

(Please refer to documentation included in executive source code)

21.1.3 The WRASCII option

genLCD(WRASCII,ASCII_code)

(Please refer to documentation included in executive source code)

21.1.4 The WRCHRoption

genLCD(WRCHR,?char)

(Please refer to documentation included in executive source code)

21.1.5 The BUSYTSToption

genLCD(BUSYTST)

(Please refer to documentation included in executive source code)

21.1.6 The RETHOMoption

genLCD(RETHOM)

(Please refer to documentation included in executive source code)

78

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

21.1.7 The CLRSCRoption

genLCD(CLRSCR)

(Please refer to documentation included in executive source code)

21.1.8 The MOVFWDoption

genLCD(MOVFWD)

(Please refer to documentation included in executive source code)

21.1.9 The MOVBCKoption

genLCD(MOVBCK)

(Please refer to documentation included in executive source code)

21.1.10 The SETPOSoption

genLCD(SETPOS,pos)

(Please refer to documentation included in executive source code)

21.1.11 The WRSTRoption

genLCD(WRSTR,?char_buf)

(Please refer to documentation included in executive source code)

21.1.12 The ENDoption

genLCD(END)

(Please refer to documentation included in executive source code)

21.2 The LCDdisp user macro

LCDdisp(?buf)

(Please refer to documentation included in executive source code)

79

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

80

Part IV

General purpose remarks

81

Chapter 22

About Robosoft board axis related
signals

When using Robosoft board for driving axis, in conjunction with PWM signal, user may need to
set both axis validation bit (i.e. axis active or inactive) and axis direction bit (i.e. backward or fore-
ward). All of these operations are handled by PWM(c.f. 9), inhAmp (c.f. 19) and dirAmp (c.f. 18)
user macros. These macros make use of MPWMSM and MPIOSM submodules, respectively for
PWM and, validation and direction. Table 22.1 gives the correspondence between axis identifiers,
MPWMSM submodule output pins and MPIOSM submodule data pins. Let us remark, that due
to the actual Robosoft board hardware implementation, only the first four PWM signals are fully
available (both duty-cycle and sign). This will propably change with future board revisions.

PWM signal Validation signal Direction signal
PWM MPWMSM Validation MPIOSM Direction MPIOSM
user submodule user submodule user submodule

Axis Id. channel output pins signal data pins signal data pins
0 0 MPWMSM0 0 D8 0 D4
1 1 MPWMSM1 1 D9 1 D5
2 2 MPWMSM2 2 D10 2 D6
3 3 MPWMSM3 3 D11 3 D7
4 4 MPWMSM16 (not available)
5 5 MPWMSM17 (not available)
6 6 MPWMSM18 (not available)
7 7 MPWMSM19 (not available)

Table 22.1: Correspondance between Robosoft board axis Id., PWM, validation and direction
signals data pins

Last, let us note that validation user signals (i.e. MPIOSM pins from D8 to D11) can be con-
trolled only if Robosoft software watchdog is activated (cf. chapter 20 for watchdog macros
description).

83

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

84

Bibliography

[1] Thierry Grandpierre, Christophe Lavarenne, Yves Sorel.
SynDEx.
All information available at the SynDEx web site: http://www-rocq.inria.fr/syndex.

[2] Motorola Inc.
MPC555/556 User’s Manual RISC PowerPC TM Microcontrollers
TSG Transportation Division.
Digital DNA From Motorola, Revised 15 October 2000.
All information available at the Motorola web site. The zipped document version can be
downloaded at: http://www.maneapc.demon.co.uk/motorola/mpc555/555.zip. Document
can also be read on-line at: http://www.maneapc.demon.co.uk/motorola/mpc555.htm.

[3] Motorola Inc.
Fast Quadrature Decode TPU Function (FQD)
(Order this document by TPUPN02/D).
Motorola Semiconductor Programming Note by Jeff Wright, 1997.
All information available at the Seattle Robotics Society web site. This document version can
be downloaded at: http://www.seattlerobotics.org/encoder/200006/tpupn02.pdf.

[4] Analog Device
Quad 12-Bit Serial Voltage Output DAC DAC8420.
REV. 0.
All information available at the Analog Device web site. This document version can be
downloaded at: http://www.analog.com/pdf/dac8420.pdf.

[5] Philips Logic
74HC/HCT4538 Dual retriggerable precision monostable multivibrator.
September 1993
All information available at the Philips Logic web site. This document version can be
downloaded at: http://www.philipslogic.com/products/hc/pdf/74hc4538.pdf.

[6] Hitachi Semiconductor
HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver).
September 1999, Rev. 0.0
All information available at the Hitachi Semiconductor web site. This document version can
be downloaded at: http://semiconductor.hitachi.com/products/pdf/99rtd006d2.pdf.

85

http://www-rocq.inria. fr/syndex
http://www.maneapc.demon.co.uk/motorola/mpc555/555.zip
http://www.maneapc.demon.co.uk/motorola/mpc555.htm
http://www.seattlerobotics.org/encoder/200006/tpupn02.pdf
http://www.analog.com/pdf/dac8420.pdf
http://www.philipslogic.com/products/hc/pdf/74hc4538.pdf
http://semiconductor.hitachi.com/products/pdf/99rtd006d2.pdf

Index

Absolute encoder, 69
Generic macros, 69

Finalization, 69
Initialization, 69
Loop execution, 69

User macros
Read (normal mode), 70
Read (under timer interrupt), 70

Analog to digital convertion, 33
Generic macros, 33

Finalization, 34
Initialization, 33
Loop execution, 34

User macros, 34
Read (normal mode), 34
Read (under timer interrupt), 35

Axis signals, 83

C functions interfacing, 19
Call, 19
Declaration, 19

Digital to analog converter, 63
Generic macros, 63

Finalization, 64
Initialization, 63
Loop execution, 63

User macros, 64
Write (normal), 64
Write (under under interrupt), 65

DSP-like operations, 27
Dot product, 27
Equalizer, 27

Finalizations
MPIOSM 16-bits port, 38

General-purpose I/O, 29
User macro, 31

Read (normal mode), 31
Read (under timer interrupt), 31
Write (normal mode), 31
Write (under timer interrupt), 32

Generic macros, 29
Finalization, 30

Initialization, 29
Read all input, 29
Read one pin, 30
Write all output, 30
Write one pin, 30

Incremental encoder support, 43
Generic macros, 43

Finalization, 44
Initialization, 43
Loop execution, 43

User macros, 44
Read (normal mode), 44
Read (under timer interrupt, 45

Initializations
ADC, 33
DAC, 63
General-purpose I/O, 29
Incremental encoder, 43
LCD, 77
LED, 67
MPIOSM 16-bits port, 37
PWM, 41
QSPI, 47
Robosoft board, 61
Serial port, 49
SPI encoder, 69
Watchdog, 75

LCD controller, 77
Generic macros, 77

Clear screen, 79
Finalization, 79
Give instructions, 78
Initialization, 77
Move backward, 79
Move forward, 79
Set home position, 78
Set position, 79
Test busy state, 78
Write character, 78
Write character pointer content, 78
Write string, 79

User macros
Write string, 79

86

ROBOSOFT
Service Robotics The 555.m4x SynDEx Macro-Executive:

Description of Macros for Handling RSMPC555 Boards

LED, 67
Generic macros, 67

Finalization, 68
Initialization, 67
Loop execution, 67
Turn off, 67
Turn on, 67

User macros
Set (normal mode), 68
Set (under timer interrupt), 68

MIOS 16-bit Parallel Port I/O, 37
User macro (normal mode), 38
Generic macros, 37

Write one pin, 38
Finalizations, 38
Initialization, 37
Loop execution, 37

Motor power amplifier, 71, 73
Motor power amplifier direction setting, 71

Generic macros, 71
Default direction, 71
Opposite direction, 71
Reset directions, 71

Motor power amplifier validation, 73
Generic macros, 73

Disable, 73
Enable, 73

PWM generator, 41
Generic macros, 41

Finalization, 42
Initialization, 41
Loop execution, 41

User macros, 42
Write (normal mode), 42
Write (under timer interrupt), 42

Relational operations, 25
Equality, 25
Less than, 25
Not equality, 25
Not less than, 25

Reset
ADC, 34
DAC, 64
General-purpose I/O, 30
Incremental encoder, 44
LCD controller, 79
LED, 68
PWM, 42
QSPI, 47
Serial port, 54
SPI encoder, 69

Watchdog, 76

Serial peripheral interface, 47
Generic macros, 47

Finalization, 47
Initialization, 47

Serial port, 49, 55
Generic macros (polling), 49

Fill string with buffer, 52
Fill string with N characters, 52
Finalization, 54
Initialization, 49
Read, 51
Write address content, 53
Write buffer, 52
Write character, 51
Write N characters, 54
Write string, 53

Generic macros (under interrupt), 55
Finalization, 55
Initialization, 55

User macros
Read string (under interrupt), 56
Write string, 57

TPU functions, 43
Fast quadrature decode, see Incremen-

tal encoder support

Unary operations, 21
Add, 23
And, 23
Divide, 24
Multiply, 24
Negate, 21
Not, 21
Or, 23
Substract, 23
Xor, 23

Watch dog, 75
Generic macros, 75

Finalization, 76
Initialization, 75
Loop execution, 75

User macros
Refresh (under timer interrupt), 76

87

	Contents
	List of Figures
	List of Tables
	I Acknowledgments
	Introduction
	Recommandations

	II Motorola MPC555 chip specific macros
	Subroutine calls for interfacing separately compiled C functions
	The Cdecl_ macro
	The Ccall_ macro

	Generic unary operations for standard scalar and array types
	The gnot macro
	The gneg macro

	Generic binary operations for standard scalar and array types
	The gand macro
	The gor macro
	The gxor macro
	The gadd macro
	The gsub macro
	The gmul macro
	The gdiv macro

	Generic relational operations for standard scalar types
	The gequal macro
	The gnotequal macro
	The gless macro
	The gnotless macro

	Generic DSP-like operations for integer and float types
	The gdotProd macro
	The gequalize macro

	General-purpose input/output
	The genGPIO generic macro
	The INIT option
	The RDSTATE option
	The WRSTATE option
	The RDPIN option
	The WRPIN option
	The END option

	The RDGPIO user macro
	The RDGPIO_it_ user macro
	The WRGPIO user macro
	The WRGPIO_it_ user macro

	Queued analog to digital converter module
	The genQADC generic macro
	The INIT option
	The LOOP option
	The END option

	The RDQADC user macro
	The RDQADC_it_ user macro

	MIOS 16-bit Parallel Port I/O Submodule
	The genMPIOSM generic macro
	The INIT option
	The LOOP option
	The ON option
	The OFF option
	The END option

	The MPIOSM user macro
	Note for users

	Pulse width modulation generator
	The genPWM generic macro
	The INIT option
	The LOOP option
	The END option

	The PWM user macro
	The PWM_it_ user macro

	Fast quadrature decode TPU function (for incremental encoder support)
	The genTPU_FQD generic macro
	The INIT option
	The LOOP option
	The END option

	The TPU_FQD user macro
	The TPU_FQD_it_ user macro

	Queued serial peripheral interface
	The QSPI generic macro
	The INIT option
	The END option

	Serial port support (POLLING implementation)
	The genSCIpoll generic macro
	The INIT option
	The RD option
	The WRC option
	The WRB option
	The STB option
	The STN option
	The WRA option
	The WRS option
	The WRN option
	The END option

	Serial port support (interrupt handling implementation)
	The genSCI_it_ generic macro
	The INIT option
	The END option

	The SCI_it_gets user macro
	Note for users
	The SCI_puts user macro

	III Robosoft board specific macros
	Robosoft board initializations
	The main_ini_ macro

	Digital to analog converter
	The genDAC generic macro
	The INIT option
	The LOOP option
	The END option

	The DAC user macro
	The DAC_it_ user macro

	On-board LED interface
	The genLED generic macro
	The INIT option
	The ON option
	The OFF option
	The LOOP option
	The END option

	The LED user macro
	The LED_it_ user macro

	SPI absolute encoder
	The genSPIencoder generic macro
	The INIT option
	The LOOP option
	The END option

	The SPIencoder user macro
	The SPIencoder_it_ user macro

	Power amplifier direction setting
	The dirAmp generic macro
	The INI option
	The DEF option
	The INV option

	Note for users

	Motor power amplifier validation
	The inhAmp generic macro
	The ENA option
	The DIS option

	Note for users

	Watch dog
	The genWatchDog generic macro
	The INIT option
	The LOOP option
	The END option

	The watchDog_it_ user macro

	Dot matrix LCD controller support
	The genLCD generic macro
	The INIT option
	The WRINST option
	The WRASCII option
	The WRCHR option
	The BUSYTST option
	The RETHOM option
	The CLRSCR option
	The MOVFWD option
	The MOVBCK option
	The SETPOS option
	The WRSTR option
	The END option

	The LCDdisp user macro

	IV General purpose remarks
	About Robosoft board axis related signals

	Bibliography
	Index

