

 BlueBotics SA 27.06.2007

Parc Scientifique PSE-C Tel +41 21 693 83 14
1015 Lausanne EPFL Fax +41 21 693 83 15
Switzerland www.bluebotics.com

The WHEELCHAIR Platform

User Guide / REV2359

 BlueBotics SA – 1 – 27.06.2007

Table Of Contents
Table Of Contents...1
Introduction..2

1.1 The WHEELCHAIR Platform..2
1.2 Important Disclaimer..3
1.3 Robot Overview...3
1.4 Specification...4

Basic Use...5
2.1 Main Switch..5
2.2 Charging...6
2.3 Communication with the Firmware ...7
2.4 Modeling of the Laser Bumper..7
2.5 Shape Modeling for Obstacle Avoidance.......................................9
2.6 Map for Localization ..10

Configuration of the Hardware ...11
3.1 The Inova Firmware (PowerPC BIOS)...11
3.2 Configuring the Netgear Station Adapter12
3.3 The XO/2 Real-Time Operating System12
3.4 Loading the Map from a TFTP Server..12
3.5 Step by Step Configuration ...13

Basic Software ..14
4.1 Introduction ..14
4.2 HTTP/CGI Communication...14
4.3 CGIs with XO/2..15
4.4 Sensors – XO/2 System..15
4.5 Speed Controller – XO/2 System ...17
4.6 Position Controller – XO/2 System...19
4.7 Safety Controller – XO/2 System..20
4.8 Mission – XO/2 System...22
4.9 Revision History...23

Hardware Extension..25
5.1 +5V, +12V, +24V Power Supply...25
5.2 Serial Ports...26

Troubleshooting...27
Miscellaneous..28

7.1 Recommendations ..28
7.2 Important Disclaimer..28

 BlueBotics SA – 2 – 27.06.2007

Chapter

1

Introduction

Brief description of the robot and its functionality

1.1 The WHEELCHAIR Platform

The WHEELCHAIR platform is the results of three years of experience gained by BlueBotics during the

MOVEMENT project1. It is shortly described here with respect to mechanics, electronics and software.

1.1.1 Mechanics

BlueBotics integrates as many standard components as possible from the motorized wheelchair market.

Then, the long experience of BlueBotics in building mobile robots has then been used for designing all the

structure of the robot resulting in a compact system, which is very robust and powerful.

1.1.2 Electronics

When used for research, the electronics of the robot has not just to be industry proven, but also to be as

flexible as possible in order to allow further extension of the presented robot since the robot remains a

development platform within the project.

During the MOVEMENT project, BlueBotics has developed an electronics, which is compatible with the

former products, but allow also making autonomous this wheelchair as well as many industrial AGVs2.

This ensures reliability and extensibility accompanied by knowledge about their characteristics and

performances.

1.1.3 Software

The reliability and extensibility of the hardware has to be accessible to the end-user. For this, on the top of

the hardware a hard real-time operating system has been adopted for all the time critical tasks concerning

the movement of the robot.

To ensure flexibility, the functions controlled by this operating system can be accessed by any other

system either via HTTP/CGI calls.

1 Modular Versatile Mobility Enhancement Technology, Specific Targeted Research Project nr. 511670
2 Automated Guided Vehicles

 BlueBotics SA – 3 – 27.06.2007

1.2 Important Disclaimer

The delivered platform remains a system for laboratory use.

The platform should not be used without supervision of a competent person.

1.3 Robot Overview

Figure 1 shows the basic design of the base. The drive wheels are in the middle, while there are two main

castor wheels in the rear and two castor wheels on springs in the front. The motor amplifiers are under the

wireless communication. In the front there is a SICK LMS-200. The CompactPCI rack is placed over the

batteries and fixed to the robot frame.

Figure 1: The robotic part with all the components and the chassis. The main components are: Two

drive wheels with motors and amplifiers, four castor wheels (two on springs), two batteries, two

main electronic prints, one CompactPCI rack and an optional SICK laser scanner.

electronics

drive motor

castor wheel

main wheel

main chassis

wireless 802.11b/g

CompactPCI

SICK LMS-200

castor wheel

spring system

castor wheel

 BlueBotics SA – 4 – 27.06.2007

1.4 Specification

The specification is inspired by the DIN EN 12184 (ISO 7176) Class A and B standards:

• Payload3: 150kg

• Dynamic stability: 6° (10.5%)4

• Climbing ability: 6° (10.5%)4

• Static stability: 9° (15.8%)4

• Parking brake: 9° (15.8%)4

• Max speed: 5km/h

• Max acceleration: 1.35m/s2

• Minimal clearance: 40mm

• Obstacle ability5: 35mm

• Maximal turning radius: 1000mm

• Maximal turning area: 1300mm

• Autonomy: 10km

• Length6: 670mm

• Width6: 560mm

• Horizontal braking distance: 0.8m from max speed7

• Noise: 65dB(A)8

3 Standard for DIN EN 12184 testing and Otto Bock A200 are 100kg
4 DIN EN 12184 Class B
5 DIN EN 12184 Class A is 15mm, Class B is 50mm
6 Without cover
7 DIN EN 12184
8 DIN EN 12184 Class A

 BlueBotics SA – 5 – 27.06.2007

Chapter

2

Basic Use

Main switch, charging, power supply

2.1 Main Switch

The WHEELCHAIR platform's main switch (on/off) is on the left of the platform. Down is off, up is on.

Figure 2: Main switch on the WHEELCHAIR platform.

 BlueBotics SA – 6 – 27.06.2007

2.2 Charging

This section briefly describes how to charge the robot's batteries.

2.2.1 Material

Charger: Curtis charger, black box for charging the batteries.

2.2.2 To Charge the Robot

1 - Switch off the robot (see Figure 2).

2 - Connect the charger to the plug on the robot (Figure 3).

3 - Turn on the charger.

Figure 3: Connector for charging. External 24V power supply.

Note that you can also work without batteries by connecting an external 24V power supply. In this case the

platform will not be allowed to move.

 BlueBotics SA – 7 – 27.06.2007

2.3 Communication with the Firmware

If you have to configure the firmware of the PowerPC card (see 3.1.3 Configuration of Firmware on

page11), you have to connect to the serial port in the front left of the rack.

2.4 Modeling of the Laser Bumper

The WHEELCHAIR platform implements a virtual bumper based on the laser scanner data. Three areas

are defined:

• Warning area (orange line) – If the laser detects a point in this area, it informs the safety system,

which turns the flash on.

• Emergency area (red line) – Points detected in the emergency area cause an emergency

message to the safety systems, which stops the platform.

• Exclude area (green line) – The exclude area are permits to define an exception to the

emergency area. More concretely, in the current setup of the WHEELCHAIR platform, the front

castor wheel can be in the view of the laser scanner (when the platform moves backward). The

area where the castors can be seen by the laser scanner is excluded from the emergency area

(but not from the warning area).

The configuration of these areas for the WHEELCHAIR platform is shown in Figure 4

Figure 4: Configuration of the warning, emergency and exclude areas for the laser bumper.

[750, 376]

[-750, -376]

[-460, 300]

[560, -300]

[200, -220]

[290, 220]

 BlueBotics SA – 8 – 27.06.2007

The configuration of the bumper can be done at boot time using the following procedure:

• Create an ASCII file named LaserBumper.conf containing the following command:

LaserBumper.DefineAreas BUMPER wXmin wXmax wYmin wYmax emXmin

emXmax emYmin emYmax exXmin exXmax exYmin ~ where w, em and ex

correspond respectively to the Warning, Emergency and Exclude areas. Xmin, Xmax,

Ymin, Ymax define the coordinates of the rectangular areas.

• Copy the LaserBumper.conf file in the directory of the TFTP server defined as the “default host”

(see section 3.3). The file will be loaded at boot time and used to configure the bumper.

Here's an example of a (fictive) LaserBumper.conf configuration file:

LaserBumper.DefineAreas BUMPER -0.49 0.49 -0.376 0.376 -0.36 0.36
-0.276 0.276 0.20 0.29 -0.22 0.22 ~

 BlueBotics SA – 9 – 27.06.2007

2.5 Shape Modeling for Obstacle Avoidance

If you are using ANT®9 for navigation, you can run the obstacle avoidance (ANT® – motion) based on the

SICK laser scanner. This approach uses a multi-layered dynamic path planning and collision avoidance

based on physically meaningful representations (actuator speeds and accelerations, robot geometry in

work-space). To do that, the system has to know the shape of the robot. This is described here.

The shape configuration for obstacle avoidance is stored in the file Peripherals.conf. In case you want to

use ANT® – motion on the platform with a docked module, contact BlueBotics.

Figure 5: Shape modeling of the platform for obstacle avoidance.

The configuration command in Peripherals.conf is then:

Common.PolygonAddPoints HULL 0.520 -0.290 0.160 -0.300 -0.160
-0.300 -0.460 -0.280 -0.460 0.280 -0.160 0.300 0.160 0.300 0.520
0.290 ~

Changing the position of the footrests will affect these parameters. Don't do that in the autonomous mode!

The hull can be customized at boot time by providing a file named CustomHull.conf on the default host's

TFTP server, with the following content:

Common.PolygonSetPoints HULL x0 y0 x1 y1 x2 y2 … ~

Where (x0, y0), (x1, y1), … are the points composing the hull as shown above. For example, the following

file could be used for a docked module (note the ~ at the end of the point list):

Common.PolygonSetPoints HULL
 0.52 0.25

9 ANT® is the navigation product of BlueBotics SA, Lausanne. ANT® stands for Autonomous Navigation
Technology and is a registered trade mark of BlueBotics.

[-460, 280]
[-160, 300] [160, 300]

[520, 290]

[520, -290]
[160, -300] [-160, -300]

[-460, -280]

 BlueBotics SA – 10 – 27.06.2007

 0.276 0.34
 -0.53 0.34
 -0.58 0.29
 -0.58 -0.29
 -0.53 -0.34
 0.276 -0.34
 0.52 -0.25
~

2.6 Map for Localization

When using the localization system (ANT® – Localization) you have to provide a model of the environment.

This model is called “map”. Note that for the moment:

ANT® – Localization is only active when you give mission commands to the robot (see section 4.1).

In the future the localization will be completely stand-alone. This means that you will only have two modes

(i.e. speed control or position control with obstacle avoidance) and you will turn on/off localization

separately.

 BlueBotics SA – 11 – 27.06.2007

Chapter

3

Configuration of the Hardware

How to make the robot work

3.1 The Inova Firmware (PowerPC BIOS)

3.1.1 Bootfile

The bootfile is a file, which is automatically downloaded by starting the robot. The robot searches for that

file via FTP on a specified server.

3.1.2 Server & Host IP

The robot is directly accessible on the network via radio Ethernet. It therefore requires an IP address.

Furthermore, as explained in the last section, it needs a FTP server to start-up. The IP of the server has

also to be specified.

3.1.3 Configuration of Firmware

By connecting a serial cable (null-modem) from the back of the rack (see 2.3 Communication with the

Firmware on page 7) to a standard terminal (bps: 9600, data bits: 8, parity: none, stop bits: 1, flow control:

none) the firmware can be configured. Turn on the system and press a key during booting.

Press any key to stop auto-boot...

This will lead to a prompt.

[VxWorks Boot]:

The “c” command allows then configuring the following options. The "host name" should never contain a

dot (".").

'.' = clear field; '-' = go to previous field; ^D = quit

boot device : dc0
processor number : 0
host name : host
file name : xo2r106mov
inet on ethernet (e) : 192.168.8.100:ffffff00
inet on backplane (b):
host inet (h) : 192.168.8.25
gateway inet (g) : 192.168.8.1
user (u) : ftpUser
ftp password (pw) (blank = use rsh): ftpPassword
flags (f) : 0x0
target name (tn) : robotName
startup script (s) :
other (o) :

 BlueBotics SA – 12 – 27.06.2007

3.2 Configuring the Netgear Station Adapter

You have to configure the station adapter to access your own network. For this, you have to connect with a

web browser on the station adapter via the Ethernet cable on the platform (remember that you have to be

on the same subnet). Then you log in (user: admin; pass: none), and finally, you choose your Wireless

Network Name (SSID).

3.3 The XO/2 Real-Time Operating System

The XO/2 operating system has a configuration facility, which is embedded in the Preferences module. It is

preferable not to play with this module, but if changes in the network configuration (DNS, SMTP server,

mail address, search domain, etc.) are required, this module allows for simple configuration by means of

the following commands (via telnet):

• Preferences.Show – Allows seeing the current configuration. Use this before changing the

parameters!

• Preferences.SetBoardName – Configures the name of the PowerPC board.

• Preferences.SetBootfileName – Not working with this board (see section 3.1.1).

• Preferences.SetClockDST – Sets the daylight saving time.

• Preferences.SetClockDiff – Defines the time zone.

• Preferences.SetDefaultHost – This is an important command, which defines from which IP

address the robot will search for compiled modules if they are not already on the robot, when the

dynamic loading takes place. It also defines where the robot will look for its initial map file. You

have to set this option to your computer when you are developing.

• Preferences.SetNetworkParameters – Not working with this board (see section 3.1.2).

• Preferences.SetPrimaryDNS – Configures the primary DNS for your network.

• Preferences.SetSMTPServer – Defines the SMTP server the robot will use to send emails.

• Preferences.SetSearchDomain – Sets the search domain for you network (i.e. epfl.ch)

• Preferences.SetSecondaryDNS – Configures the secondary DNS.

• Preferences.SetServerAddress – Not working with this board (see section 3.1.2).

• Preferences.SetTimeSever – Defines the time server within your network.

• Preferences.SetUserMailAddress – Defines the email address the robot will use when writing

emails. This option can be used to recognize from where the email is coming or to have a reply

to the responsible of the robot.

• Preferences.SetUserName – Sets the name of the user, which is then used for login.

• Preferences.SetUserPassword – Defines the password, which is required for login.

3.4 Loading the Map from a TFTP Server

In order to allow you changing the map in every moment, the text file describing it is not in the bootfile. The

Init.map file is directly loaded from a TFTP server defined as the “default host” (see section 3.3).

Note that if your computer is defined as “default host” you don’t need to log in with user and password via

telnet before using the robot.

 BlueBotics SA – 13 – 27.06.2007

3.5 Step by Step Configuration

To summarize you have to follow these steps:

0. Configure the Netgear station adapter to access your Wireless Network Name (SSID). See

section 3.2.

1. Connect the serial cable. See section 2.3.

2. Connect with a serial terminal (bps: 9600, data bits: 8, parity: none, stop bits: 1, flow control:

none). See section 3.1.3.

3. Turn on the robot and press a key. See section 3.1.3.

4. Configure the robot name (target name) and address (inet on ethernet) and the FTP server

name (host name), address (host inet), user name (user) and password (ftp password). You

may also need to configure the gateway (gateway inet) and bootfile name (file name). See

section 3.1.3.

5. Put the bootfile in the FTP directory and the Init.map in the TFTP directory of the server. See

section 3.4.

6. Restart the platform. The operating system should start. If not, recheck points 4 and 5.

7. Finally, you have to configure the Default Host to your TFTP server:

Preferences.SetDefaultHost "IP_adress". See section 3.3.

8. Enjoy…

 BlueBotics SA – 14 – 27.06.2007

Chapter

4

Basic Software

Robot drivers, controllers and interfacing

4.1 Introduction

As explained in the design of the platform10 the software is deployed on two levels:

• On the top of the hardware a deadline driven hard real-time operating system operates all the

time critical tasks accessing the robot basic hardware.

• Another level of abstraction is added for flexibility: All functions controlled by the embedded real-

time operating system can be accessed by any other system via HTTP/CGI calls.

4.2 HTTP/CGI Communication

Note that for the WHEELCHAIR platforms, we have adopted an 802.11b/g wireless system. We therefore

expect a better response time with compared to the old 802.11 BreezeCom AP.40. The response time with

the BreezeCom AP.40 wireless module is shown in Figure 6. For low data requests (~ 20 bytes) the

response time via the 4 port hub is below 10 ms. For bigger ones like the data from the SICK laser scanner

(~15 kB) the time is below 40 ms. However, when the Windows 2000 scheduler interrupts the program,

peaks can reach up to 150 ms even for the low data requests. Requests via wireless (not cable on its hub)

have a response time of less than 30 ms for low data and less than 110 ms for the scan.

Figure 6: Access of resource into the PowerPC via HTTP/CGI

10 D6.1 - Multi purpose mobile platform design, UPDATE (a), 15.11.2005

 BlueBotics SA – 15 – 27.06.2007

4.3 CGIs with XO/2

The CGIs calls to a machine running XO/2 use the syntax:

 http://IPaddress/cgi/ModuleName.CGIName?firstParameter+secondParameter+…+nthParamanter

For the WHEELCHAIR platform a dedicated module accessing all the needed resources has been

implemented. All the CGIs are therefore accessed by the PPCtoPC module.

Being this module a standard XO/2 module, the CGIs can also be used as standard XO/2 commands via

telnet with the syntax:

 ModuleName.CGIName firstParameter secondParameter … nthParamanter

When a call returns one ore more values, each value is returned on a separate line.

The status code returned by several calls is a hierarchically-structured string that gives information about

the execution status of the call. Read from left to right, each component gives more information. For

example:

Ok Command execution successful

Error.Parameter.x Parameter parse error on parameter "x"

Warning.SecurityNotRunning Safety controller not running

4.4 Sensors – XO/2 System

4.4.1 Odometry

The odometry is updated at 100Hz.

odometryGet – Returns the robot position in [m, m, rad].

Syntax: PPCtoPC.odometryGet
Returns: x, y, theta

odometrySet – Sets the robot position in [m, m, rad]. The syntax is:

Syntax: PPCtoPC.odometrySet?x+y+theta
Returns: status
Status codes: Ok
 Error.Parameter.*

 BlueBotics SA – 16 – 27.06.2007

4.4.2 Laser Scanner

The laser scanner works at 37Hz, the timestamp is set as the meantime of a scan meaning that the

maximum error is approximately 15ms.

lsGetCartesian – Returns the data from the laser scanner in ASCII format with the observation timestamp

[ms], the robot position at observation time [mm, mm, mrad], the number of measurements, and all the (x,

y) measurements [mm].

Syntax: PPCtoPC.lsGetCartesian
Returns: timestamp [ms]

 xr, yr, θr [mm, mm, mrad]
 n_measurements
 xn, yn for n = 1 .. n_measurement [mm, mm]

lsGetPolar – NOT WORKING IN THIS REV – Returns the data from the laser scanner in ASCII format with

the observation timestamp [ms], the robot position at observation time [mm, mm, mrad], the number of

measurements, and all the (phi, rho) measurements [mrad, mm].

Syntax: PPCtoPC.lsGetPolar
Returns: timestamp [ms]

 xr, yr, θr [mm, mm, mrad]
 n_measurements

 θn, ρn for n = 1 .. n_measurement [mrad, mm]

lsGetPolarIntens – NOT WORKING IN THIS REV – Returns the data from the laser scanner in ASCII

format with the observation timestamp [ms], the robot position at observation time [mm, mm, mrad], the

number of measurements, and all the (phi, rho, int) measurements [mrad, mm, SICKsignalintensity].

Syntax: PPCtoPC.lsGetPolarIntens
Returns: timestamp [ms]

 xr, yr, θr [mm, mm, mrad]
 n_measurements

 θn, ρn, int for n = 1 .. n_measurement [mrad, mm, SICKsignalintensity]

lsGetRawData – Returns the raw data from the laser scanner in the sensor frame (not robot frame like all

the other. The ASCII format is: observation timestamp [ms], robot position at observation time [mm, mm,

mrad], number of measurements, and all the rho measurements [mm]. The angles in sensor frame are

directly given by 180°/number of measurements.

Syntax: PPCtoPC.lsGetRawData
Returns: timestamp [ms]

 xr, yr, θr [mm, mm, mrad]
 n_measurements

 ρn for n = 1 .. n_measurement [mm]

 BlueBotics SA – 17 – 27.06.2007

4.5 Speed Controller – XO/2 System

The speed controller runs at 100Hz.

speedGetSpeed – Returns the platform speed (translation and rotation).

Syntax: PPCtoPC.speedGetSpeed
Returns: xDot [m/s]
 thetaDot [rad/s]

speedSetSpeed – Sets the speed of the platform (translation and rotation) in [m/s] and [rad/s].

Syntax: PPCtoPC.speedSetSpeed?xDot+thetaDot
Returns: status
Status codes: Ok
 Error.Parameter.*

speedGetWheelSpeeds – Returns the right and left wheel speed in [rad/s].

Syntax: PPCtoPC.speedGetWheelSpeeds
Returns: speedR, speedL [rad/s]

speedSetWheelSpeeds – Sets the speed of the left and right wheel speed in [rad/s].

Syntax: PPCtoPC.speedSetWheelSpeeds?speedR+speedL
Returns: status
Status codes: Ok
 Error.Parameter.*

speedTrapezTranslate – Perform a pure translation motion of the given distance, with a trapezoidal speed

profile. Distance is the distance to be traveled in [m] and must be positive. Speed is the maximum speed of

the motion profile in [m/s], and must be positive for forward motion and negative for backward motion.

Acceleration is the acceleration at the beginning of the motion and the deceleration at the end in [m/s].

THIS CALL ONLY WORKS RELIABLY IN SPEED CONTROL MODE (see securitySetBumpMode).

Syntax: PPCtoPC.speedTrapezTranslate?distance+speed+acceleration
Returns: status
Status codes: Ok
 Error.Parameter.*

speedTrapezRotate – Perform a pure rotation motion of the given angle, with a trapezoidal speed profile.

Angle is the angle to be traveled in [rad] and must be positive. Speed is the maximum angular speed of the

motion profile in [rad/s], and must be positive for counter-clockwise motion and negative for clockwise

motion. Acceleration is the angular acceleration at the beginning of the motion and the deceleration at the

end in [rad/s]. THIS CALL ONLY WORKS RELIABLY IN SPEED CONTROL MODE (see

securitySetBumpMode).

Syntax: PPCtoPC.speedTrapezRotate?angle+speed+acceleration
Returns: status
Status codes: Ok
 Error.Parameter.*

speedXchgJoystick – Exchange speed commands and override flag with joystick commands. xDot and

thetaDot are the requested platform speeds (translation and rotation) in [m/s] and [rad/s]. If override is 0,

the joystick is used for speed commands. If override is 1, xDot and thetaDot are used for speed

commands, therefore overriding the joystick. The call returns the current joystick position.

 BlueBotics SA – 18 – 27.06.2007

Syntax: PPCtoPC.speedXchgJoystick?xDot+thetaDot+override
Returns: joystickX [%]
 joystickY [%]

 BlueBotics SA – 19 – 27.06.2007

4.6 Position Controller – XO/2 System

The position controller runs at 10Hz.

positionAbort – Aborts the current GoTo command.

Syntax: PPCtoPC.positionAbort
Returns: status
Status codes: Ok

positionGetState – Returns the internal state of the position controller in ASCII format.

Syntax: PPCtoPC.positionGetState
Returns: state
State codes: Warning.SecurityNotRunning Safety controller is not running
 Ok.Running Robot is moving
 Ok.Ready Robot is ready for the next command

positionGetStateInfo – Given a state code, this CGI returns a string explaining the meaning of the value.

Syntax: PPCtoPC.positionGetStateInfor?"state"
Returns: stateInfo [string]
Status codes: Ok

positionGoBackward – After executing this command, the robot will move around in backward direction.

!!! WARNING: The robot has no sensors in the back !!!

Syntax: PPCtoPC.positionGoBackward
Returns: status
Status codes: Ok

positionGoForward – After executing this command, the robot will move around in forward direction. This is

the default direction.

Syntax: PPCtoPC.positionGoForward
Returns: status
Status codes: Ok

positionGoTo – Defines the (x, y, theta) goal position in world coordinates that the robot has to reach.

Syntax: PPCtoPC.positionGoTo?x+y+theta
Returns: status
State codes: Ok
 Error.Parameter.*
 Error.TooFar Goal position is too far (distance >10m)

positionTurn – Defines the heading goal position in world coordinates that the robot has to reach.

Syntax: PPCtoPC.positionTurn?theta
Returns: status
State codes: Ok
 Error.Parameter.*

 BlueBotics SA – 20 – 27.06.2007

4.7 Safety Controller – XO/2 System

The safety controller guarantees that the speed controller and eventually the position controller are always

alive. Furthermore, it takes into account the bumpers by setting the speed to (0, 0) and disabling the motor

amplifiers when a collision occurs.

securityGetState –This CGI return the state, which allow understanding the current state of the safety

controller.

Syntax: PPCtoPC.securityGetState
Returns: status
Status codes: Ok
 Warning.SecurityNotRunning Safety controller is not running
 Warning.VoltageLow Battery voltage is getting low
 Warning.HotProcessor Processor temperature is too high
 Emergency.SpeedCtrlHalted Speed controller is halted
 Emergency.ObstAvoidanceHalted Obstacle avoidance is halted
 Emergency.VoltageLow Battery voltage is critically low

securityGetStateInfo – Given a state value, this CGI returns a string explaining the meaning of the value.

Syntax: PPCtoPC.securityGetStateInfor?"state"
Returns: stateInfo [string]
Status codes: Ok

securitySetAvoidMode – Allows activating the obstacle avoidance (with the SICK laser scanner) as

position controller. This CGI can be used only when the safety controller is stopped.

Syntax: PPCtoPC.securitySetAvoidMode
Returns: status
Status codes: Ok
 Error Mode could not be activated

securitySetBumpMode – Allows stopping the obstacle avoidance to use the speed controller directly. The

laser scanner is used as bumper only. This CGI can be used only when the safety controller is stopped.

Syntax: PPCtoPC.securitySetBumpMode
Returns: status
Status codes: Ok
 Error Mode could not be activated

securitySetJoyMode – Stops the obstacle avoidance and puts the platform into joystick-only control mode.

In this mode, traffic is relayed bidirectionally between the motor controller and a handcontrol connected to

the CAN bus of the docking module. The laser scanner is used as bumper only. This CGI can be used

only when the safety controller is stopped.

Syntax: PPCtoPC.securitySetJoyMode
Returns: status
Status codes: Ok
 Error Mode could not be activated

securitySetJoyOverMode – Stops the obstacle avoidance and puts the platform into overridable joystick

control mode. In this mode, traffic is relayed bidirectionally between the motor controller and a handcontrol

connected to the CAN bus of the docking module, but the speed target values can be overridden using the

xchgJoystick LOS call or the speedXchgJoystick CGI call. The laser scanner is used as bumper only. This

CGI can be used only when the safety controller is stopped.

 BlueBotics SA – 21 – 27.06.2007

Syntax: PPCtoPC.securitySetJoyOverMode
Returns: status
Status codes: Ok
 Error Mode could not be activated

securitySetJoyMotionPar – Sets motion parameters for joystick drive. The joystick sends drive commands

as integers in the range [-100; 100]. The X axis drives the platform rotation, the Y axis its forward motion.

maxX and maxY limit the range of commands allowed from the joystick in both directions, and must be in

the range [0; 100]. maxAccX and maxAccY limit the rate of change on each axis per 20ms, when

accelerating. Deceleration cannot be trimmed for safety reasons. The default values are maxX=30,

maxY=100, maxAccX=1, maxAccY=1. This means acceleration is at its minimum value, and the platform

needs 2 seconds to get to full forward speed.

Syntax: PPCtoPC.securitySetJoyMotionPar?maxX+maxAccX+maxY+maxAccY
Returns: status
State codes: Ok
 Error.Parameter.*

securitySetMailer[On / Off] – NOT SUPPORTED ON THIS PLATFORM – Turn on/off the mailer option.

When on, the robots sends its errors to the defined mail address (see securitySetMailAdr in this section). In

order to use this option the robot has to be connected to the Ethernet network (not a local one) and have

access to the defined SMTP server, which is set in the board ROM by Preferences.SetSMTPServer (see

section 3.2).

Syntax: PPCtoPC.securitySetMailerOn and PPCtoPC.securitySetMailerOff
Returns: status
Status codes: Ok
 Error Mailer could not be turned on/off

securitySetMailAdr – NOT SUPPORTED ON THIS PLATFORM – Allows to set the email address to use

with the mailer option.

Syntax: PPCtoPC.securitySetMailerAdr?"addr"
Returns: status
Status codes: Ok
 Error.Parameter.*

securityStart – Starts the safety controller.

Syntax: PPCtoPC.securityStart
Returns: status
Status codes: Ok
 Error Safety controller could not be started

securityStop – Stops the safety controller. This must be used before turning off the robot.

Syntax: PPCtoPC.securityStop
Returns: status
Status codes: Ok
 Error Safety controller could not be stopped

securityVoltage – Returns the voltage of the batteries in [V].

Syntax: PPCtoPC.securityVoltage
Returns: voltage [V]

 BlueBotics SA – 22 – 27.06.2007

4.8 Mission – XO/2 System

Mission allows moving around by using the map graph. You can either go to a (x, y, theta) goal position

or to a Node defined in the map.

missionAbort – Aborts the current GoTo command.

Syntax: PPCtoPC.missionAbort
Returns: status
Status codes: Ok

missionGoTo – Defines the (x, y, theta) goal position in world coordinates that the robot has to reach.

Syntax: PPCtoPC.missionGoTo?x+y+theta
Returns: status
Status codes: Ok
 Error.Paramter.*
 Error.TooFar Goal position is too far (distance > 10m)
 Error.Busy Robot is already executing a GoTo command

missionGoToNode – Defines the node ID that the robot has to reach.

Syntax: PPCtoPC.missionGoToNode?nodeID
Returns: status
Status codes: Ok
 Error.Paramter.*
 Error.Busy Robot is already executing a GoTo command

missionReset – Resets the odometry position of the robot to the home node position. This is helpful when

the robot is not started on the home node or if the robot get lost.

Syntax: PPCtoPC.missionReset
Returns: status
Status codes: Ok

missionGetMotionState – Returns the current state of the navigation algorithm. A state starting with

"Moving" means the algorithm is still in control, whereas a state starting with "Stopped" means the robot

has either arrived at the requested position or has given up.

Syntax: PPCtoPC.missionGetMotionState
Returns: state
State codes: Moving.Ok
 Moving.Collision A collision was detected with the bumpers
 Moving.EmgButton The emergency button is pressed
 Stopped.Ok The goal has been reached
 Stopped.SecurityNotRunning The security controller is not running
 Stopped.LocalizationError There was an error in the robot localization
 Stopped.PlanError An unknown node was encountered
 Stopped.Aborted The motion was aborted by missionAbort
 Stopped.GoalBlocked The obstacle avoidance cannot reach the goal
 Stopped.Lost The robot got lost
 Stopped.Undefined An undefined error has happened

 BlueBotics SA – 23 – 27.06.2007

4.9 Localization – XO/2 System

The localization can be started and stopped using the following commands.

localizationStart – This command starts the localization.

Syntax: PPCtoPC.localizationStart
Returns: status
Status codes: Ok
 Error

localizationStop – This command starts the localization.

Syntax: PPCtoPC.localizationStop
Returns: status
Status codes: Ok
 Error

 BlueBotics SA – 24 – 27.06.2007

4.10 Revision History

4.10.1 REV2195

REV2195 is the first version used for the teaching.

4.10.2 REV2359

Added features:

• Added bumper configuration procedure.

• Added localizationStart and localizationStop CGI calls.

• Added speedTrapezTranslate, speedTrapezRotate and speedXchgJoystick CGI call.

• Implemented lsGetRawData CGI call.

• Added boot-time hull customization.

 BlueBotics SA – 25 – 27.06.2007

Chapter

5

Hardware Extension

Power supply and serial ports

5.1 +5V, +12V, +24V Power Supply

The WHEELCHAIR platform allows for the connection of several +5V, +12V, and +24. The position of the

connectors is shown in Figure 7.

Figure 7: Connectors for +5V, +12V, and +24 power supply.

 BlueBotics SA – 26 – 27.06.2007

5.2 Serial Ports

The WHEELCHAIR platform has some I/Os that are not required by the basic system. Figure 8 shows the

board allowing connecting new peripherals to the robot via the configurable RS-232/422 ports.

Figure 8: The configurable RS-232/422 ports.

Reserved to the

SICK laser scanner

Used by the redundant

HW supervisor

 BlueBotics SA – 27 – 27.06.2007

Chapter

6

Troubleshooting

What to do when

Problem Cause Solution

No response from the RS232
(configuration of the PowerPC)

RS232 settings

9600bps, 8 data bits, no parity, 1 stop bits, no flow control

" Null-modem need Add a null-modem converter

Platform beeps and does not
power up when I switch on

Batteries are low

Switch off and charge the batteries.

Set speed not respected (robot
stops after speed command)

Position control running

Stop the security, set bump mode, start security

" Bumper contact Bumper contact cause set speed(0, 0). You have to displace the
robot to avoid the contact.

Everything looks fine but the
robot does not move neither in
autonomous nor in joystick mode

Unbrake system Release the unbrake system.

 BlueBotics SA – 28 – 27.06.2007

Chapter

7

Miscellaneous

Recommendations

7.1 Recommendations

Demounting or displacing parts and components on the robot is not permitted. Defects arising to a

component after or during a displacement could cause the loss of the warranty.

The structure (chassis) of the robot is in aluminum. Some edges are sharp and may be dangerous. Pay

attention when using the robot.

Part of the electronics is not covered. Avoid any contact with this surface.

7.2 Important Disclaimer

The delivered platform remains a system for laboratory use.

The platform should not be used without supervision of a competent person.

